An Introduction to Artificial Intelligence and Solutions to the Problems of Algorithmic Discrimination

人工智能 计算机科学 认知科学 心理学
作者
Nicholas Schmidt,Bryce Stephens
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.1911.05755
摘要

There is substantial evidence that Artificial Intelligence (AI) and Machine Learning (ML) algorithms can generate bias against minorities, women, and other protected classes. Federal and state laws have been enacted to protect consumers from discrimination in credit, housing, and employment, where regulators and agencies are tasked with enforcing these laws. Additionally, there are laws in place to ensure that consumers understand why they are denied access to services and products, such as consumer loans. In this article, we provide an overview of the potential benefits and risks associated with the use of algorithms and data, and focus specifically on fairness. While our observations generalize to many contexts, we focus on the fairness concerns raised in consumer credit and the legal requirements of the Equal Credit and Opportunity Act. We propose a methodology for evaluating algorithmic fairness and minimizing algorithmic bias that aligns with the provisions of federal and state anti-discrimination statutes that outlaw overt, disparate treatment, and, specifically, disparate impact discrimination. We argue that while the use of AI and ML algorithms heighten potential discrimination risks, these risks can be evaluated and mitigated, but doing so requires a deep understanding of these algorithms and the contexts and domains in which they are being used.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
1秒前
李健应助哈哈哈哈采纳,获得10
1秒前
newnew完成签到,获得积分10
2秒前
March发布了新的文献求助10
4秒前
5秒前
我是老大应助延胡索采纳,获得10
5秒前
10秒前
11秒前
11秒前
zheng完成签到 ,获得积分10
13秒前
yx_cheng应助江小白采纳,获得10
14秒前
hh发布了新的文献求助10
14秒前
15秒前
尊敬秋双完成签到 ,获得积分10
15秒前
thirteen完成签到,获得积分10
16秒前
FashionBoy应助彩色的飞柏采纳,获得10
17秒前
娜子完成签到,获得积分10
18秒前
21秒前
梦雪完成签到,获得积分20
22秒前
22秒前
淡定的迎梦完成签到,获得积分10
22秒前
oldblack完成签到,获得积分10
24秒前
cd发布了新的文献求助10
25秒前
abc1122完成签到,获得积分10
26秒前
假面绅士发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
30秒前
传奇3应助茹茹采纳,获得10
31秒前
31秒前
shhoing应助假面绅士采纳,获得10
33秒前
ding完成签到,获得积分10
33秒前
33秒前
34秒前
34秒前
35秒前
35秒前
36秒前
CCsouljump完成签到 ,获得积分10
36秒前
37秒前
37秒前
吕博完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542539
求助须知:如何正确求助?哪些是违规求助? 4628834
关于积分的说明 14609866
捐赠科研通 4569918
什么是DOI,文献DOI怎么找? 2505492
邀请新用户注册赠送积分活动 1482882
关于科研通互助平台的介绍 1454215