亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A study on tooth segmentation and numbering using end-to-end deep neural networks

分割 计算机科学 编号 人工智能 深度学习 人工神经网络 目标检测 图像分割 计算机视觉 市场细分 模式识别(心理学) 算法 业务 营销
作者
Bernardo Silva,Laís Pinheiro,Luciano Oliveira,Matheus Melo Pithon
标识
DOI:10.1109/sibgrapi51738.2020.00030
摘要

Shape, number, and position of teeth are the main targets of a dentist when screening for patient's problems on X-rays. Rather than solely relying on the trained eyes of the dentists, computational tools have been proposed to aid specialists as decision supporter for better diagnoses. When applied to X-rays, these tools are specially grounded on object segmentation and detection. In fact, the very first goal of segmenting and detecting the teeth in the images is to facilitate other automatic methods in further processing steps. Although researches over tooth segmentation and detection are not recent, the application of deep learning techniques in the field is new and has not reached maturity yet. To fill some gaps in the area of dental image analysis, we bring a thorough study on tooth segmentation and numbering on panoramic X-ray images by means of end-to-end deep neural networks. For that, we analyze the performance of four network architectures, namely, Mask R-CNN, PANet, HTC, and ResNeSt, over a challenging data set. The choice of these networks was made upon their high performance over other data sets for instance segmentation and detection. To the best of our knowledge, this is the first study on instance segmentation, detection, and numbering of teeth on panoramic dental X-rays. We found that (i) it is completely feasible to detect, to segment, and to number teeth by through any of the analyzed architectures, (ii) performance can be significantly boosted with the proper choice of neural network architecture, and (iii) the PANet had the best results on our evaluations with an mAP of 71.3% on segmentation and 74.0% on numbering, raising 4.9 and 3.5 percentage points the results obtained with Mask R-CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tiger发布了新的文献求助10
3秒前
光合作用完成签到,获得积分10
8秒前
33秒前
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
点心完成签到,获得积分10
2分钟前
2分钟前
jiaobu发布了新的文献求助30
3分钟前
zxp发布了新的文献求助40
3分钟前
小马甲应助jiaobu采纳,获得10
3分钟前
雷九万班发布了新的文献求助50
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
Owen应助peninsula采纳,获得10
4分钟前
jqliu完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
peninsula发布了新的文献求助10
4分钟前
斯文败类应助yyy采纳,获得10
5分钟前
田様应助peninsula采纳,获得10
5分钟前
小二郎应助科研通管家采纳,获得30
5分钟前
6分钟前
Ryoman完成签到,获得积分10
6分钟前
6分钟前
yyy发布了新的文献求助10
6分钟前
Owen应助JY采纳,获得10
6分钟前
6分钟前
6分钟前
JY发布了新的文献求助10
6分钟前
今后应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助david采纳,获得10
8分钟前
帅气惜霜完成签到 ,获得积分10
8分钟前
xiaolang2004完成签到,获得积分10
8分钟前
8分钟前
jiaobu发布了新的文献求助10
8分钟前
annnnnnd完成签到 ,获得积分10
8分钟前
赘婿应助jiaobu采纳,获得10
8分钟前
eccentric完成签到,获得积分10
8分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795590
求助须知:如何正确求助?哪些是违规求助? 3340629
关于积分的说明 10300837
捐赠科研通 3057157
什么是DOI,文献DOI怎么找? 1677522
邀请新用户注册赠送积分活动 805442
科研通“疑难数据库(出版商)”最低求助积分说明 762563