Cooperative Network Model for Joint Mobile Sink Scheduling and Dynamic Buffer Management Using Q-Learning

计算机科学 无线传感器网络 计算机网络 分布式计算 缓冲区溢出 水槽(地理) 调度(生产过程) 聚类分析 实时计算 工程类 人工智能 运营管理 地图学 地理
作者
Surender Redhu,Rajesh M. Hegde
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 1853-1864 被引量:28
标识
DOI:10.1109/tnsm.2020.3002828
摘要

Development of energy-efficient wireless sensor networks is crucial in the deployment of IoT and IIoT for modern day applications like smart home, smart vehicles, and smart industries. Several methods like network clustering, mobile sink deployment and dynamic sensing rate have been used in improving the energy-efficiency of wireless sensor networks in IoT framework. However, these methods have been developed independently which can lead to certain network issues like reduced lifetime, network breakdown among others. In this work, an energy-efficient method that optimizes mobile sink scheduling while concurrently providing dynamic buffer management is proposed. A cooperative network model that incorporates node clustering and mobile sink deployment in variable node sensing rate scenario is first developed. However, in such cooperative network models, mobile sink scheduling and buffer overflow management which causes information loss become challenging. This is primarily due to limited buffer size, variable sensing rate of the nodes, and the unavailability of mobile sink at all times near a cluster. Therefore, a reinforcement Q-learning framework is developed for scheduling the mobile sink while minimizing the information loss caused by buffer overflow in each cluster of a clustered WSN. More specifically, the network behaviour is learnt in the context of buffer overflow using Q-learning approach. The proposed method computes the adaptive halt-times for the mobile sink based on information loss and buffer overflow in each cluster. Performance of the proposed joint mobile sink scheduling and dynamic buffer management method is evaluated on a medium scale WSN. A clustered wireless sensor network with a total of 600 sensor nodes is considered for performance evaluation. The proposed method is shown to learn the variable node sensing rate in a reasonable amount of time using convergence analysis. Numeric evaluations indicate that the proposed method minimizes the information loss in a medium scale wireless sensor network while improving the network lifetime simultaneously. The proposed cooperative network model also outperforms in terms of energy-efficiency when compared to conventional WSN. The results are motivating enough for the use of cooperative network model in practical WSNs for IoT applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tomjeery发布了新的文献求助10
3秒前
大大彬发布了新的文献求助10
4秒前
Akim应助阿啵呲嘚呃of咯采纳,获得10
4秒前
5秒前
lan完成签到,获得积分10
5秒前
王小美发布了新的文献求助10
8秒前
谷青发布了新的文献求助10
10秒前
10秒前
JamesPei应助深耕采纳,获得30
11秒前
舒心外套完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
凶狠的便当完成签到,获得积分10
13秒前
乐乐发布了新的文献求助10
13秒前
15秒前
朴实彩虹完成签到,获得积分10
15秒前
谷青完成签到,获得积分10
17秒前
xifala发布了新的文献求助10
17秒前
思源应助zchchem采纳,获得10
18秒前
Yxiang完成签到 ,获得积分10
18秒前
躺平小李发布了新的文献求助10
20秒前
21秒前
23秒前
24秒前
26秒前
26秒前
27秒前
风中雅青完成签到 ,获得积分10
28秒前
躺平小李完成签到,获得积分10
28秒前
张利双发布了新的文献求助10
28秒前
深耕发布了新的文献求助30
29秒前
鲤鱼谷秋发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
30秒前
32秒前
11发布了新的文献求助10
32秒前
32秒前
33秒前
zchchem发布了新的文献求助10
34秒前
乐乐完成签到,获得积分10
35秒前
Maestro_S应助沧元采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5527154
求助须知:如何正确求助?哪些是违规求助? 4616990
关于积分的说明 14556613
捐赠科研通 4555649
什么是DOI,文献DOI怎么找? 2496426
邀请新用户注册赠送积分活动 1476724
关于科研通互助平台的介绍 1448227