Predicting postoperative delirium after microvascular decompression surgery with machine learning

医学 算法 谵妄 逻辑回归 机器学习 减压 随机森林 人工智能 外科 麻醉 内科学 计算机科学 重症监护医学
作者
Ying Wang,Lei Lei,Mu‐Huo Ji,Jianhua Tong,Chengmao Zhou,Jianjun Yang
出处
期刊:Journal of Clinical Anesthesia [Elsevier BV]
卷期号:66: 109896-109896 被引量:40
标识
DOI:10.1016/j.jclinane.2020.109896
摘要

The aim of this study was to predict early delirium after microvascular decompression using machine learning. Retrospective cohort study. Second Hospital of Lanzhou University. This study involved 912 patients with primary cranial nerve disease who had undergone microvascular decompression surgery between July 2007 and June 2018. None. We collected data on preoperative, intraoperative, and postoperative variables. Statistical analysis was conducted in R, and the model was constructed with python. The machine learning model was run using the following models: decision tree, logistic regression, random forest, gbm, and GBDT models. 912 patients were enrolled in this study, 221 of which (24.2%) had postoperative delirium. The machine learning Gbm algorithm finds that the first five factors accounting for the weight of postoperative delirium are CBZ use duration, hgb, serum CBZ level measured 24 h before surgery, preoperative CBZ dose, and BUN. Through machine learning five algorithms to build prediction models, we found the following values for the training group: Logistic algorithm (AUC value = 0.925, accuracy = 0.900); Forest algorithm (AUC value = 0.994, accuracy = 0.948); GradientBoosting algorithm (AUC value = 0.994, accuracy = 0.970) and DecisionTree algorithm (aucvalue = 0.902, accuracy = 0.861); Gbm algorithm (AUC value = 0.979, accuracy = 0.944). The test group had the following values: Logistic algorithm (aucvalue = 0.920, accuracy = 0.901); DecisionTree algorithm (aucvalue = 0.888, accuracy = 0.883); Forest algorithm (aucvalue = 0.963, accuracy = 0.909); GradientBoostingc algorithm (aucvalue = 0.962, accuracy = 0.923); Gbm algorithm (AUC value = 0.956, accuracy = 0.920). Machine learning algorithms predict the occurrence of delirium after microvascular decompression with an accuracy rate of 96.7%. And the major risk factors for the development of post-cardiac delirium are carbamazepine, hgb, and BUN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向秋寒发布了新的文献求助10
4秒前
4秒前
科研通AI6应助纯真问梅采纳,获得10
6秒前
大模型应助爬不起来采纳,获得10
6秒前
氢描氮写发布了新的文献求助10
7秒前
无花果应助renerxiao采纳,获得10
8秒前
波谷发布了新的文献求助10
9秒前
13秒前
Hour应助邓谷云采纳,获得10
14秒前
羽化成仙完成签到 ,获得积分10
14秒前
14秒前
16秒前
邓谷云发布了新的文献求助10
17秒前
css发布了新的文献求助10
18秒前
英俊的铭应助科学徐采纳,获得10
18秒前
18秒前
糕冷草莓发布了新的文献求助10
19秒前
波谷完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
23秒前
内向秋寒完成签到,获得积分10
23秒前
23秒前
24秒前
24秒前
24秒前
25秒前
老水完成签到,获得积分10
26秒前
27秒前
科研雪瑞发布了新的文献求助10
27秒前
殷启维发布了新的文献求助10
28秒前
dawnshea发布了新的文献求助10
28秒前
爬不起来发布了新的文献求助10
28秒前
joruruo完成签到,获得积分10
29秒前
shy发布了新的文献求助10
29秒前
唐泽雪穗应助shisui采纳,获得30
29秒前
Gauss应助shisui采纳,获得30
29秒前
852应助dduoyang采纳,获得10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4771408
求助须知:如何正确求助?哪些是违规求助? 4106204
关于积分的说明 12702060
捐赠科研通 3825462
什么是DOI,文献DOI怎么找? 2110907
邀请新用户注册赠送积分活动 1135061
关于科研通互助平台的介绍 1017187