Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications

乳腺癌 生物 互补DNA 微阵列 雌激素受体 DNA微阵列 基础(医学) 组织微阵列 基因 基因表达谱 纤维腺瘤 微阵列分析技术 内科学 基因表达 癌症研究 癌症 肿瘤科 病理 乳腺癌 医学 遗传学 内分泌学 胰岛素
作者
Thérese Sørlie,Charles M. Perou,Robert Tibshirani,Turid Aas,Stephanie Geisler,Hilde Johnsen,Trevor Hastie,Michael B. Eisen,Matt van de Rijn,Stefanie S. Jeffrey,Thor Thorsen,H. Quist,John C. Matese,Patrick O. Brown,David Botstein,Per Eystein Lønning,Anne‐Lise Børresen‐Dale
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:98 (19): 10869-10874 被引量:10647
标识
DOI:10.1073/pnas.191367098
摘要

The purpose of this study was to classify breast carcinomas based on variations in gene expression patterns derived from cDNA microarrays and to correlate tumor characteristics to clinical outcome. A total of 85 cDNA microarray experiments representing 78 cancers, three fibroadenomas, and four normal breast tissues were analyzed by hierarchical clustering. As reported previously, the cancers could be classified into a basal epithelial-like group, an ERBB2 -overexpressing group and a normal breast-like group based on variations in gene expression. A novel finding was that the previously characterized luminal epithelial/estrogen receptor-positive group could be divided into at least two subgroups, each with a distinctive expression profile. These subtypes proved to be reasonably robust by clustering using two different gene sets: first, a set of 456 cDNA clones previously selected to reflect intrinsic properties of the tumors and, second, a gene set that highly correlated with patient outcome. Survival analyses on a subcohort of patients with locally advanced breast cancer uniformly treated in a prospective study showed significantly different outcomes for the patients belonging to the various groups, including a poor prognosis for the basal-like subtype and a significant difference in outcome for the two estrogen receptor-positive groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
都是完成签到,获得积分10
1秒前
Xiaozhe完成签到,获得积分10
1秒前
1秒前
科研通AI5应助蔺山河采纳,获得10
1秒前
朴实巧荷发布了新的文献求助10
1秒前
晨曦完成签到,获得积分10
2秒前
2秒前
魁梧的盼望完成签到 ,获得积分10
2秒前
2秒前
小明完成签到,获得积分10
3秒前
专注的小松鼠完成签到,获得积分10
3秒前
3秒前
sujustin333完成签到,获得积分10
4秒前
4秒前
LingC完成签到,获得积分10
4秒前
丘比特应助复杂的怜菡采纳,获得10
4秒前
linhuafeng完成签到,获得积分10
4秒前
1111完成签到,获得积分20
5秒前
自觉寄风发布了新的文献求助10
5秒前
5秒前
itachi完成签到,获得积分10
5秒前
lalala发布了新的文献求助10
5秒前
datang完成签到,获得积分10
6秒前
6秒前
Zhu XY.发布了新的文献求助10
6秒前
研友_nqv2WZ完成签到,获得积分10
7秒前
上官若男应助yhmi0809采纳,获得10
7秒前
阿良发布了新的文献求助10
7秒前
8秒前
WenfengFan完成签到,获得积分10
8秒前
duxixixi完成签到,获得积分10
8秒前
李博文完成签到,获得积分10
8秒前
老木虫发布了新的文献求助10
8秒前
月亮门儿完成签到 ,获得积分10
8秒前
laopei2001发布了新的文献求助10
8秒前
9秒前
魏笑白完成签到 ,获得积分10
9秒前
10秒前
Akim应助我超强采纳,获得10
10秒前
10秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804626
求助须知:如何正确求助?哪些是违规求助? 3349484
关于积分的说明 10344593
捐赠科研通 3065523
什么是DOI,文献DOI怎么找? 1683126
邀请新用户注册赠送积分活动 808719
科研通“疑难数据库(出版商)”最低求助积分说明 764695