Keyframe-based visual–inertial odometry using nonlinear optimization

人工智能 计算机科学 里程计 计算机视觉 惯性参考系 惯性测量装置 视觉里程计 陀螺仪 机器人学 概率逻辑 非线性规划 卡尔曼滤波器 同时定位和映射 加速度计 非线性系统 机器人 移动机器人 工程类 航空航天工程 物理 操作系统 量子力学
作者
Stefan Leutenegger,Simon Lynen,Michael Bosse,Roland Siegwart,Paul Furgale
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
卷期号:34 (3): 314-334 被引量:1282
标识
DOI:10.1177/0278364914554813
摘要

Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate visual–inertial odometry or simultaneous localization and mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that nonlinear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual–inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter. This competitive reference implementation performs tightly coupled filtering-based visual–inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一口一个小面包完成签到,获得积分20
刚刚
dgncncjs完成签到,获得积分10
刚刚
1秒前
王乐多完成签到,获得积分10
1秒前
2秒前
烟花应助寒冷的面包采纳,获得10
2秒前
2秒前
kaka完成签到,获得积分10
2秒前
Hello应助yixi采纳,获得10
3秒前
3秒前
Jasper应助福福采纳,获得10
3秒前
天天快乐应助雨落楸枰采纳,获得10
3秒前
3秒前
4秒前
xyy发布了新的文献求助10
4秒前
脑洞疼应助小任采纳,获得10
5秒前
111发布了新的文献求助10
6秒前
SMIRTGIRL发布了新的文献求助10
7秒前
7秒前
勤劳元瑶完成签到,获得积分10
7秒前
7秒前
hull完成签到,获得积分10
8秒前
8秒前
8秒前
FAST发布了新的文献求助10
8秒前
aaaa发布了新的文献求助10
9秒前
hinatazaka46发布了新的文献求助10
9秒前
小明完成签到,获得积分10
9秒前
9秒前
英俊的铭应助hey采纳,获得10
10秒前
kaka发布了新的文献求助10
11秒前
YHK完成签到,获得积分10
12秒前
Lijunjie完成签到,获得积分10
12秒前
12秒前
等待冬亦应助圆彰七大采纳,获得10
12秒前
12秒前
小任完成签到,获得积分20
13秒前
一一应助冬卉采纳,获得10
13秒前
董雅山发布了新的文献求助10
14秒前
酷酷的白凡完成签到,获得积分10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering 200
Parallel Optimization 200
Artificial bee colony algorithm 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835390
求助须知:如何正确求助?哪些是违规求助? 3377738
关于积分的说明 10500252
捐赠科研通 3097373
什么是DOI,文献DOI怎么找? 1705674
邀请新用户注册赠送积分活动 820675
科研通“疑难数据库(出版商)”最低求助积分说明 772210