Keyframe-based visual–inertial odometry using nonlinear optimization

人工智能 计算机科学 里程计 计算机视觉 惯性参考系 惯性测量装置 视觉里程计 陀螺仪 机器人学 概率逻辑 非线性规划 卡尔曼滤波器 同时定位和映射 加速度计 非线性系统 机器人 移动机器人 工程类 航空航天工程 物理 操作系统 量子力学
作者
Stefan Leutenegger,Simon Lynen,Michael Bosse,Roland Siegwart,Paul Furgale
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
卷期号:34 (3): 314-334 被引量:1556
标识
DOI:10.1177/0278364914554813
摘要

Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate visual–inertial odometry or simultaneous localization and mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that nonlinear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual–inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter. This competitive reference implementation performs tightly coupled filtering-based visual–inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一二完成签到 ,获得积分10
1秒前
曹雄发布了新的文献求助10
1秒前
多多发布了新的文献求助10
1秒前
清爽灰狼发布了新的文献求助10
1秒前
冯先森ya完成签到,获得积分10
1秒前
大个应助ln采纳,获得50
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
llzuo发布了新的文献求助10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
dzy完成签到,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
blablawindy发布了新的文献求助10
4秒前
阳光的醉香完成签到,获得积分20
4秒前
5秒前
领导范儿应助十一采纳,获得10
5秒前
Zjj发布了新的文献求助10
6秒前
乐乐应助zengli采纳,获得10
6秒前
丘比特应助乔垣结衣采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4520913
求助须知:如何正确求助?哪些是违规求助? 3963079
关于积分的说明 12283471
捐赠科研通 3626648
什么是DOI,文献DOI怎么找? 1995825
邀请新用户注册赠送积分活动 1032143
科研通“疑难数据库(出版商)”最低求助积分说明 922326