MRI ‐Based Radiomics Model for Classifying Axillary Lymph Node Burden and Disease‐Free Survival in Patients With Early‐Stage Breast Cancer

作者
Yulan Tong,Ying Zhu,Sijia Wen,Du Meimei,Haiwei Miao,Jiejie Zhou,Meihao Wang,Min-Ying Su
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
标识
DOI:10.1002/jmri.70182
摘要

ABSTRACT Background Axillary lymph node (ALN) burden is a key prognostic determinant in breast cancer and plays an important role in diagnosis and treatment planning. The noninvasive assessment of ALN burden might improve patient stratification and guide individualized treatment. Purpose To explore the potential of MRI‐based radiomics in preoperative classification of ALN burden in early‐stage breast cancer and to assess survival differences between patients with high‐ and low‐ALN burden. Study Type Retrospective. Population Pathologically confirmed breast cancer patients ( n = 343): training ( n = 170), testing ( n = 73) and internal validation ( n = 50) from center 1; center 2 ( n = 50) for external validation. Field Strength/Sequence 3T, dynamic contrast‐enhanced (DCE) sequence. Assessment Four different machine learning classifiers were used to develop clinical, radiomics, and combined models for preoperative ALN burden assessment (66 high‐burden cases). DCE‐MRI radiomics features were extracted, and the optimal model was used to determine the Radscore. A clinical model was derived from clinicopathological variables, and integrated with the Radscore to form a combined model. Kaplan–Meier and Cox regression analyses were performed to compare disease‐free survival (DFS) between high‐ and low‐burden groups. Statistical Tests Intraclass Correlation Coefficient (ICC), LASSO, logistic regression, Mann–Whitney U tests, Chi‐squared tests, DeLong's test, Area Under the Curve (AUC), Decision Curve Analysis (DCA), calibration curves and Kaplan–Meier analysis, with p < 0.05 as significant. Results The Random Forest–based combined model yielded AUCs of 0.881 (95% CI, 0.811–0.941) in the training set, 0.826 (0.716–0.917) in the testing set, 0.912 (0.811–0.985) in the internal validation set, and 0.881 (0.737–0.985) in the external validation set. When using the cut‐off value determined from the training set, the overall accuracy was 0.759, 0.795, 0.840, and 0.860, respectively. Kaplan–Meier analysis revealed significant DFS differences between the model‐classified high‐ and low‐burden groups ( p = 0.022, HR = 2.9). Data Conclusion MRI‐based radiomics models show promise for noninvasive evaluation of ALN burden and prognostic stratification of survival outcomes in breast cancer patients. Level of Evidence 3. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨完成签到,获得积分20
刚刚
Reese完成签到,获得积分10
刚刚
Liyaya完成签到,获得积分10
1秒前
1秒前
1秒前
Melanie完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
谢俞发布了新的文献求助10
3秒前
白糖发布了新的文献求助10
4秒前
小杨发布了新的文献求助10
4秒前
李爱国应助奔跑的苕皮采纳,获得10
4秒前
4秒前
jeany199037完成签到,获得积分10
4秒前
4秒前
无花果应助咕咕采纳,获得10
5秒前
吴泽宇发布了新的文献求助10
5秒前
xzj7789210发布了新的文献求助10
5秒前
傻瓜发布了新的文献求助10
5秒前
5秒前
demotlx完成签到,获得积分10
6秒前
要减肥书桃完成签到 ,获得积分10
6秒前
搜集达人应助重要冷之采纳,获得10
6秒前
7秒前
斯文败类应助zxt采纳,获得10
7秒前
Owen应助呵呵哒采纳,获得10
7秒前
老金喵发布了新的文献求助10
7秒前
彭于晏应助斯文的翠阳采纳,获得10
7秒前
Intjer发布了新的文献求助10
7秒前
上官若男应助zmjmj采纳,获得10
8秒前
浮游应助zhujingyao采纳,获得10
8秒前
Buddhist完成签到,获得积分20
8秒前
小乔同学发布了新的文献求助10
9秒前
Stella应助jn采纳,获得30
9秒前
王腾完成签到,获得积分10
9秒前
10秒前
迅速的八宝粥完成签到,获得积分10
10秒前
Criminology34应助科研小白采纳,获得10
10秒前
Stella应助wujiasheng采纳,获得30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351917
求助须知:如何正确求助?哪些是违规求助? 4484853
关于积分的说明 13960712
捐赠科研通 4384534
什么是DOI,文献DOI怎么找? 2409028
邀请新用户注册赠送积分活动 1401521
关于科研通互助平台的介绍 1375057