Graphene Oxide Membranes with Conical Nanochannels for Ultrafast Water Transport.

纳米技术 化学物理
作者
Yu Ma,Yanlei Su,Mingrui He,Benbing Shi,Runnan Zhang,Jianliang Shen,Zhongyi Jiang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:10 (43): 37489-37497 被引量:9
标识
DOI:10.1021/acsami.8b12868
摘要

Membrane-based separations have been increasingly utilized to address global energy crisis and water scarcity. However, the separation efficiency often suffers from the trade-off between membrane permeability and selectivity. Although great efforts have been devoted, a membrane with both high permeability and high selectivity remains a distant prospect. Inspired by the hourglass structure and ultrafast water transport in aquaporins, we propose a novel approach to fabricating membranes with conical nanochannels to reduce the mass transfer resistance and to introduce Laplace pressure as the internal driving force, which successfully breaks the permeability/selectivity trade-off. First, sulfonated polyaniline (SPANI) nanorods were in situ-synthesized and vertically aligned on sulfonated graphene oxide (SGO) nanosheets, forming SGO-SPANI X composites. Then, the graphene oxide (GO) membranes were fabricated by assembling SGO-SPANI X composites through pressure-assisted filtration, in which the SPANI nanorods would bend and flatten on the SGO nanosheets under low shear force, forming stripe arrays on SGO nanosheets. The tilted stripe arrays between the adjacent SGO nanosheets form the conical nanochannels inside GO membranes. The conical nanochannels significantly decreased the steric hindrance and enabled the generation of Laplace pressure as the internal driving force within membranes. Consequently, the resulting membranes exhibit an ultrahigh water permeability of 1222.77 L·m-2·h-1·bar-1 and high efficiency in dye removal from water with a rejection of 90.44% and permeability of 528 L·m-2·h-1·bar-1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YTT发布了新的文献求助10
3秒前
苏州小北发布了新的文献求助10
4秒前
今后应助小糖豆采纳,获得30
4秒前
hml完成签到,获得积分10
9秒前
无聊的从霜完成签到 ,获得积分10
9秒前
12秒前
搜集达人应助阿黑采纳,获得30
12秒前
fanyuhong完成签到 ,获得积分10
15秒前
YTT完成签到,获得积分10
15秒前
CCC发布了新的文献求助20
16秒前
Yummerwei完成签到,获得积分10
19秒前
星辰大海应助瑞葛采纳,获得10
19秒前
抓到你啦完成签到,获得积分10
21秒前
TT完成签到,获得积分10
24秒前
24秒前
Jun完成签到 ,获得积分10
26秒前
小丸子完成签到 ,获得积分10
27秒前
memem1发布了新的文献求助10
28秒前
爆米花应助董秋白采纳,获得20
28秒前
SOLOMON应助奔铂儿钯采纳,获得10
30秒前
zwj完成签到,获得积分10
30秒前
囚徒发布了新的文献求助10
30秒前
30秒前
谷雨完成签到 ,获得积分10
31秒前
31秒前
CCC完成签到,获得积分20
33秒前
邪帝完成签到,获得积分10
34秒前
任性的鸿涛完成签到,获得积分10
34秒前
PP发布了新的文献求助10
34秒前
35秒前
离霜完成签到 ,获得积分10
37秒前
h3xxxmax完成签到,获得积分10
40秒前
YJY发布了新的文献求助10
41秒前
CC发布了新的文献求助10
41秒前
42秒前
两栖玩家发布了新的文献求助10
42秒前
董秋白发布了新的文献求助20
47秒前
YJY完成签到,获得积分10
47秒前
48秒前
48秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
Glossary of Geology 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2474361
求助须知:如何正确求助?哪些是违规求助? 2139407
关于积分的说明 5452184
捐赠科研通 1863189
什么是DOI,文献DOI怎么找? 926351
版权声明 562833
科研通“疑难数据库(出版商)”最低求助积分说明 495538