Sentiment annotations for reviews: an information quality perspective

计算机科学 情绪分析 注释 质量(理念) 独创性 判决 旅游 透视图(图形) 互联网 情报检索 产品(数学) 数据科学 万维网 自然语言处理 人工智能 定性研究 社会科学 认识论 哲学 社会学 法学 数学 政治学 几何学
作者
Heng‐Li Yang,August F.Y. Chao
出处
期刊:Online Information Review [Emerald Publishing Limited]
卷期号:42 (5): 579-594 被引量:6
标识
DOI:10.1108/oir-04-2017-0114
摘要

Purpose The purpose of this paper is to propose sentiment annotation at sentence level to reduce information overloading while reading product/service reviews in the internet. Design/methodology/approach The keyword-based sentiment analysis is applied for highlighting review sentences. An experiment is conducted for demonstrating its effectiveness. Findings A prototype is built for highlighting tourism review sentences in Chinese with positive or negative sentiment polarity. An experiment results indicates that sentiment annotation can increase information quality and user’s intention to read tourism reviews. Research limitations/implications This study has made two major contributions: proposing the approach of adding sentiment annotation at sentence level of review texts for assisting decision-making; validating the relationships among the information quality constructs. However, in this study, sentiment analysis was conducted on a limited corpus; future research may try a larger corpus. Besides, the annotation system was built on the tourism data. Future studies might try to apply to other areas. Practical implications If the proposed annotation systems become popular, both tourists and attraction providers would obtain benefits. In this era of smart tourism, tourists could browse through the huge amount of internet information more quickly. Attraction providers could understand what are the strengths and weaknesses of their facilities more easily. The application of this sentiment analysis is possible for other languages, especially for non-spaced languages. Originality/value Facing large amounts of data, past researchers were engaged in automatically constructing a compact yet meaningful abstraction of the texts. However, users have different positions and purposes. This study proposes an alternative approach to add sentiment annotation at sentence level for assisting users.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南宫萍发布了新的文献求助10
刚刚
GRG完成签到 ,获得积分10
2秒前
4秒前
岁月轮回发布了新的文献求助10
8秒前
jyj完成签到 ,获得积分10
14秒前
淞淞于我完成签到 ,获得积分10
14秒前
海人发布了新的文献求助10
14秒前
叶子完成签到 ,获得积分10
16秒前
可耐的三德完成签到 ,获得积分10
16秒前
17秒前
科目三应助感动的念双采纳,获得10
18秒前
思源应助皮毛柔软的猫采纳,获得30
21秒前
烟尘发布了新的文献求助10
21秒前
21秒前
YangSY完成签到,获得积分10
25秒前
26秒前
yyy发布了新的文献求助10
27秒前
YZJing完成签到,获得积分10
27秒前
科研通AI5应助七七采纳,获得10
28秒前
30秒前
学习的小崽完成签到,获得积分10
30秒前
32秒前
称心的芙完成签到,获得积分10
32秒前
南宫萍完成签到,获得积分10
33秒前
33秒前
夏惋清完成签到 ,获得积分0
33秒前
34秒前
平常的可乐完成签到 ,获得积分10
35秒前
科研闲人完成签到,获得积分10
36秒前
wjy完成签到 ,获得积分10
37秒前
安屿发布了新的文献求助10
37秒前
称心的芙发布了新的文献求助10
40秒前
qiao应助科研通管家采纳,获得10
41秒前
传奇3应助科研通管家采纳,获得30
41秒前
41秒前
岁月轮回发布了新的文献求助10
43秒前
43秒前
SPULY发布了新的文献求助10
43秒前
AE发布了新的文献求助20
44秒前
s1ght发布了新的文献求助30
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779606
求助须知:如何正确求助?哪些是违规求助? 3325116
关于积分的说明 10221269
捐赠科研通 3040209
什么是DOI,文献DOI怎么找? 1668673
邀请新用户注册赠送积分活动 798766
科研通“疑难数据库(出版商)”最低求助积分说明 758535