亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Imbalance learning for the prediction of N6-Methylation sites in mRNAs

生物 甲基化 DNA微阵列 计算生物学 DNA甲基化 蛋白质组学 遗传学 进化生物学 生物信息学 基因表达 基因
作者
Zhixun Zhao,Hui Peng,Chaowang Lan,Yi Zheng,Liang Fang,Jinyan Li
出处
期刊:BMC Genomics [BioMed Central]
卷期号:19 (1) 被引量:32
标识
DOI:10.1186/s12864-018-4928-y
摘要

N6-methyladenosine (m6A) is an important epigenetic modification which plays various roles in mRNA metabolism and embryogenesis directly related to human diseases. To identify m6A in a large scale, machine learning methods have been developed to make predictions on m6A sites. However, there are two main drawbacks of these methods. The first is the inadequate learning of the imbalanced m6A samples which are much less than the non-m6A samples, by their balanced learning approaches. Second, the features used by these methods are not outstanding to represent m6A sequence characteristics. We propose to use cost-sensitive learning ideas to resolve the imbalance data issues in the human mRNA m6A prediction problem. This cost-sensitive approach applies to the entire imbalanced dataset, without random equal-size selection of negative samples, for an adequate learning. Along with site location and entropy features, top-ranked positions with the highest single nucleotide polymorphism specificity in the window sequences are taken as new features in our imbalance learning. On an independent dataset, our overall prediction performance is much superior to the existing predictors. Our method shows stronger robustness against the imbalance changes in the tests on 9 datasets whose imbalance ratios range from 1:1 to 9:1. Our method also outperforms the existing predictors on 1226 individual transcripts. It is found that the new types of features are indeed of high significance in the m6A prediction. The case studies on gene c-Jun and CBFB demonstrate the detailed prediction capacity to improve the prediction performance. The proposed cost-sensitive model and the new features are useful in human mRNA m6A prediction. Our method achieves better correctness and robustness than the existing predictors in independent test and case studies. The results suggest that imbalance learning is promising to improve the performance of m6A prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
山橘月发布了新的文献求助10
2分钟前
十三完成签到 ,获得积分10
2分钟前
kilig完成签到,获得积分10
2分钟前
lhl完成签到,获得积分10
2分钟前
滕靖完成签到,获得积分10
2分钟前
老石完成签到 ,获得积分10
2分钟前
ding应助Owllight采纳,获得10
2分钟前
李一诺完成签到 ,获得积分10
3分钟前
zsmj23完成签到 ,获得积分0
3分钟前
3分钟前
cy0824完成签到 ,获得积分10
3分钟前
山橘月发布了新的文献求助10
3分钟前
4分钟前
哭泣灯泡完成签到,获得积分10
4分钟前
陈无敌完成签到 ,获得积分10
5分钟前
5分钟前
哈哈发布了新的文献求助10
5分钟前
YEM完成签到 ,获得积分10
5分钟前
打打应助青阳采纳,获得10
5分钟前
山橘月发布了新的文献求助10
5分钟前
6分钟前
小v的格洛米完成签到,获得积分10
6分钟前
青阳发布了新的文献求助10
6分钟前
青阳完成签到,获得积分10
6分钟前
深情安青应助科研通管家采纳,获得10
6分钟前
英姑应助科研通管家采纳,获得10
6分钟前
隐形曼青应助科研通管家采纳,获得10
6分钟前
老马哥完成签到,获得积分0
6分钟前
哈哈完成签到,获得积分10
6分钟前
WANG发布了新的文献求助10
6分钟前
风起云涌龙完成签到 ,获得积分10
7分钟前
Vaclav完成签到 ,获得积分10
8分钟前
lynne完成签到 ,获得积分10
8分钟前
蜘蛛道理完成签到 ,获得积分10
9分钟前
10分钟前
香蕉觅云应助科研通管家采纳,获得10
10分钟前
10分钟前
山橘月发布了新的文献求助10
10分钟前
星期五完成签到 ,获得积分10
11分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330056
关于积分的说明 10244208
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759508