Radiomics of Brain MRI: Utility in Prediction of Metastatic Tumor Type

医学 黑色素瘤 接收机工作特性 流体衰减反转恢复 肺癌 磁共振成像 核医学 放射科 病理 内科学 癌症研究
作者
Helge Kniep,Frederic Madesta,Tanja Schneider,Uta Hanning,Michael Schönfeld,Gerhard Schön,Jens Fiehler,Tobias Gauer,René Werner,Susanne Siemonsen
出处
期刊:Radiology [Radiological Society of North America]
卷期号:290 (2): 479-487 被引量:173
标识
DOI:10.1148/radiol.2018180946
摘要

Purpose To investigate the feasibility of tumor type prediction with MRI radiomic image features of different brain metastases in a multiclass machine learning approach for patients with unknown primary lesion at the time of diagnosis. Materials and methods This single-center retrospective analysis included radiomic features of 658 brain metastases from T1-weighted contrast material–enhanced, T1-weighted nonenhanced, and fluid-attenuated inversion recovery (FLAIR) images in 189 patients (101 women, 88 men; mean age, 61 years; age range, 32–85 years). Images were acquired over a 9-year period (from September 2007 through December 2016) with different MRI units, reflecting heterogeneous image data. Included metastases originated from breast cancer (n = 143), small cell lung cancer (n = 151), non–small cell lung cancer (n = 225), gastrointestinal cancer (n = 50), and melanoma (n = 89). A total of 1423 quantitative image features and basic clinical data were evaluated by using random forest machine learning algorithms. Validation was performed with model-external fivefold cross validation. Comparative analysis of 10 randomly drawn cross-validation sets verified the stability of the results. The classifier performance was compared with predictions from a respective conventional reading by two radiologists. Results Areas under the receiver operating characteristic curve of the five-class problem ranged between 0.64 (for non–small cell lung cancer) and 0.82 (for melanoma); all P values were less than .01. Prediction performance of the classifier was superior to the radiologists’ readings. Highest differences were observed for melanoma, with a 17-percentage-point gain in sensitivity compared with the sensitivity of both readers; P values were less than .02. Conclusion Quantitative features of routine brain MR images used in a machine learning classifier provided high discriminatory accuracy in predicting the tumor type of brain metastases. © RSNA, 2018 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
砍柴少年发布了新的文献求助10
刚刚
Estrella完成签到,获得积分10
刚刚
方寸完成签到,获得积分10
刚刚
大个应助寒冷惜天采纳,获得10
刚刚
654发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
pauchiu完成签到,获得积分10
1秒前
由怜雪完成签到,获得积分10
3秒前
4秒前
yanglin完成签到,获得积分10
4秒前
星辰大海应助pauchiu采纳,获得10
5秒前
6秒前
6秒前
654完成签到,获得积分10
7秒前
7秒前
TUTU完成签到 ,获得积分10
7秒前
April完成签到,获得积分10
7秒前
8秒前
9秒前
happyAlice应助汪汪采纳,获得20
9秒前
9秒前
卡卡西应助不羁的红枫叶采纳,获得30
10秒前
11秒前
充电宝应助地表飞猪采纳,获得10
11秒前
Jackson发布了新的文献求助10
11秒前
mengkezhang完成签到,获得积分10
12秒前
勤奋雨完成签到,获得积分10
13秒前
炫酷火锅完成签到,获得积分10
13秒前
余烬发布了新的文献求助10
13秒前
虚幻芷文发布了新的文献求助10
13秒前
13秒前
MiaoRui发布了新的文献求助10
14秒前
zwy完成签到,获得积分10
14秒前
含蓄的荔枝应助企鹅采纳,获得10
17秒前
泡沫没有冰完成签到,获得积分10
18秒前
18秒前
JamesPei应助搬石头采纳,获得10
18秒前
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819142
求助须知:如何正确求助?哪些是违规求助? 3362242
关于积分的说明 10416115
捐赠科研通 3080466
什么是DOI,文献DOI怎么找? 1694492
邀请新用户注册赠送积分活动 814668
科研通“疑难数据库(出版商)”最低求助积分说明 768388