Four-dimensional Flow MRI: Principles and Cardiovascular Applications

医学 流线、条纹线和路径线 磁共振成像 矢量流 实时核磁共振成像 流量(数学) 放射科 人工智能 计算机科学 图像分割 分割 几何学 数学 热力学 物理
作者
Arshid Azarine,Philippe Garçon,A. Stansal,Nadia Canepa,Giorgios Angelopoulos,S. Silvera,Daniel Sidi,V. Marteau,Marc Zins
出处
期刊:Radiographics [Radiological Society of North America]
卷期号:39 (3): 632-648 被引量:134
标识
DOI:10.1148/rg.2019180091
摘要

In-plane phase-contrast (PC) imaging is now a routine component of MRI of regional blood flow in the heart and great vessels. In-plane PC MRI provides a volumetric, isotropic, time-resolved cine sequence that enables three-directional velocity encoding, a technique known as four-dimensional (4D) flow MRI. Recent advances in 4D flow MRI have shortened imaging times, while progress in big-data processing has improved dataset pre- and postprocessing, thereby increasing the feasibility of 4D flow MRI in clinical practice. Important technical issues include selection of the optimal velocity-encoding sensitivity before acquisition and preprocessing of the raw data for phase-offset corrections. Four-dimensional flow MRI provides unprecedented capabilities for comprehensive analysis of complex blood flow patterns using new visualization tools such as streamlines and velocity vectors. Retrospective multiplanar navigation enables flexible retrospective flow quantification through any plane across the volume with good accuracy. Current flow parameters include forward flow, reverse flow, regurgitation fraction, and peak velocity. Four-dimensional flow MRI also supplies advanced flow parameters of use for research, such as wall shear stress. The vigorous burgeoning of new applications indicates that 4D flow MRI is becoming an important imaging modality for cardiovascular disorders. This article reviews the main technical issues of 4D flow MRI and the different parameters provided by it and describes the main applications in cardiovascular diseases, including congenital heart disease, cardiac valvular disease, aortic disease, and pulmonary hypertension. Online supplemental material is available for this article. ©RSNA, 2019 See discussion on this article by Ordovas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助好风长吟采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
zj完成签到,获得积分10
2秒前
隐形曼青应助一叶知秋采纳,获得10
2秒前
Ava应助天天喝咖啡采纳,获得10
4秒前
北风应助草木采纳,获得10
5秒前
理想完成签到,获得积分20
5秒前
5秒前
lalala发布了新的文献求助10
5秒前
amxl发布了新的文献求助10
7秒前
兴奋静珊完成签到,获得积分10
7秒前
mia发布了新的文献求助10
7秒前
8秒前
隐形曼青应助科研通管家采纳,获得30
8秒前
木白应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
8秒前
所所应助科研通管家采纳,获得30
8秒前
科目三应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
在水一方应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
feezy完成签到,获得积分10
9秒前
9秒前
理想发布了新的文献求助10
10秒前
轻松的寻绿关注了科研通微信公众号
10秒前
打打应助农夫果园采纳,获得10
14秒前
12发布了新的文献求助10
14秒前
雪梨101发布了新的文献求助10
14秒前
yang发布了新的文献求助10
15秒前
海猫食堂发布了新的文献求助10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
【求助文献,并非书籍】Perovskite solar cells 200
Anti-Politics Machine: Development, Depoliticization, and Bureaucratic Power in Lesotho James Ferguson 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837089
求助须知:如何正确求助?哪些是违规求助? 3379257
关于积分的说明 10508333
捐赠科研通 3099045
什么是DOI,文献DOI怎么找? 1706738
邀请新用户注册赠送积分活动 821226
科研通“疑难数据库(出版商)”最低求助积分说明 772487