PowerLyra

计算机科学 地点 图划分 启发式 学位(音乐) 理论计算机科学 并行计算 计算 图形 算法 声学 语言学 操作系统 物理 哲学
作者
Rong Chen,Jiaxin Shi,Yanzhe Chen,Binyu Zang,Haibing Guan,Haibo Chen
出处
期刊:ACM Transactions on Parallel Computing [Association for Computing Machinery]
卷期号:5 (3): 1-39 被引量:99
标识
DOI:10.1145/3298989
摘要

Natural graphs with skewed distributions raise unique challenges to distributed graph computation and partitioning. Existing graph-parallel systems usually use a “one-size-fits-all” design that uniformly processes all vertices, which either suffer from notable load imbalance and high contention for high-degree vertices (e.g., Pregel and GraphLab) or incur high communication cost and memory consumption even for low-degree vertices (e.g., PowerGraph and GraphX). In this article, we argue that skewed distributions in natural graphs also necessitate differentiated processing on high-degree and low-degree vertices. We then introduce PowerLyra, a new distributed graph processing system that embraces the best of both worlds of existing graph-parallel systems. Specifically, PowerLyra uses centralized computation for low-degree vertices to avoid frequent communications and distributes the computation for high-degree vertices to balance workloads. PowerLyra further provides an efficient hybrid graph partitioning algorithm (i.e., hybrid-cut) that combines edge-cut (for low-degree vertices) and vertex-cut (for high-degree vertices) with heuristics. To improve cache locality of inter-node graph accesses, PowerLyra further provides a locality-conscious data layout optimization. PowerLyra is implemented based on the latest GraphLab and can seamlessly support various graph algorithms running in both synchronous and asynchronous execution modes. A detailed evaluation on three clusters using various graph-analytics and MLDM (Machine Learning and Data Mining) applications shows that PowerLyra outperforms PowerGraph by up to 5.53X (from 1.24X) and 3.26X (from 1.49X) for real-world and synthetic graphs, respectively, and is much faster than other systems like GraphX and Giraph, yet with much less memory consumption. A porting of hybrid-cut to GraphX further confirms the efficiency and generality of PowerLyra.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助蛋妞儿采纳,获得10
刚刚
sylinmm完成签到,获得积分10
1秒前
1秒前
大个应助sdl采纳,获得10
2秒前
2秒前
123发布了新的文献求助10
2秒前
慕青应助Paper多多采纳,获得10
3秒前
思源应助一条纤维化的鱼采纳,获得20
4秒前
丘山先生完成签到,获得积分10
4秒前
kl完成签到,获得积分10
5秒前
小王发布了新的文献求助10
5秒前
6秒前
Tang发布了新的文献求助10
7秒前
7秒前
8秒前
科研修沟完成签到 ,获得积分10
9秒前
豆浆油条发布了新的文献求助10
10秒前
10秒前
大胆的翠绿完成签到,获得积分10
11秒前
11秒前
小马甲应助hhhh采纳,获得30
11秒前
11秒前
12秒前
coeds发布了新的文献求助30
12秒前
12秒前
xiaoxiong发布了新的文献求助30
13秒前
蛋妞儿发布了新的文献求助10
14秒前
14秒前
孳孳为善6387给小叮当的求助进行了留言
16秒前
17秒前
sdl发布了新的文献求助10
18秒前
18秒前
coeds完成签到,获得积分10
19秒前
豆浆油条完成签到,获得积分10
20秒前
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
乐乐应助科研通管家采纳,获得10
21秒前
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838561
求助须知:如何正确求助?哪些是违规求助? 3380900
关于积分的说明 10516199
捐赠科研通 3100474
什么是DOI,文献DOI怎么找? 1707508
邀请新用户注册赠送积分活动 821794
科研通“疑难数据库(出版商)”最低求助积分说明 772949