计算机科学
地点
图划分
启发式
学位(音乐)
理论计算机科学
并行计算
计算
图形
算法
声学
语言学
操作系统
物理
哲学
作者
Rong Chen,Jiaxin Shi,Yanzhe Chen,Binyu Zang,Haibing Guan,Haibo Chen
摘要
Natural graphs with skewed distributions raise unique challenges to distributed graph computation and partitioning. Existing graph-parallel systems usually use a “one-size-fits-all” design that uniformly processes all vertices, which either suffer from notable load imbalance and high contention for high-degree vertices (e.g., Pregel and GraphLab) or incur high communication cost and memory consumption even for low-degree vertices (e.g., PowerGraph and GraphX). In this article, we argue that skewed distributions in natural graphs also necessitate differentiated processing on high-degree and low-degree vertices. We then introduce PowerLyra, a new distributed graph processing system that embraces the best of both worlds of existing graph-parallel systems. Specifically, PowerLyra uses centralized computation for low-degree vertices to avoid frequent communications and distributes the computation for high-degree vertices to balance workloads. PowerLyra further provides an efficient hybrid graph partitioning algorithm (i.e., hybrid-cut) that combines edge-cut (for low-degree vertices) and vertex-cut (for high-degree vertices) with heuristics. To improve cache locality of inter-node graph accesses, PowerLyra further provides a locality-conscious data layout optimization. PowerLyra is implemented based on the latest GraphLab and can seamlessly support various graph algorithms running in both synchronous and asynchronous execution modes. A detailed evaluation on three clusters using various graph-analytics and MLDM (Machine Learning and Data Mining) applications shows that PowerLyra outperforms PowerGraph by up to 5.53X (from 1.24X) and 3.26X (from 1.49X) for real-world and synthetic graphs, respectively, and is much faster than other systems like GraphX and Giraph, yet with much less memory consumption. A porting of hybrid-cut to GraphX further confirms the efficiency and generality of PowerLyra.
科研通智能强力驱动
Strongly Powered by AbleSci AI