Effects of Age and Environment on Short-Term Homing and Function of Mouse Hematopoietic Stem Cells.

作者
Brad Dykstra,Sandra Olthof,Martha Ritsema,Gerald de Haan
出处
期刊:Blood [Elsevier BV]
卷期号:116 (21): 1616-1616
标识
DOI:10.1182/blood.v116.21.1616.1616
摘要

Abstract Abstract 1616 The C57BL/6 mouse is one of the best studied models of hematopoietic stem cell (HSC) aging. Characteristic age-related changes include an increase in HSC frequency, a corresponding decrease in functional activity, myeloid skewing, and decreased in vivo homing ability. Studies of age-dependent differences in homing have primarily relied upon the injection of young or old bone marrow into irradiated recipients, with subsequent quantification of functional homed HSCs using secondary transplantation assays (e.g. Liang et al, Blood 2005). While this is a relevant and informative approach, it is limited because it measures homed cells indirectly, using an assay that itself is dependent on homing. To study this phenomenon more directly, we compared the short-term homing efficiency of purified HSCs from old and young mice by co-injecting them into old or young recipients. This approach enabled us to ascertain whether the previously reported decrease in homing efficiency is due to differences in physical homing to the bone marrow, or a reduced function per homed cell, or some combination of both. Second, it allowed us to determine the relationship between the decreased in vivo homing efficiency of old HSCs and their functional properties when assayed in a homing-independent stem cell assay. Third, by varying the age and irradiation status of the homing recipients, we could test directly the influence of these factors on HSC homing and function. To accomplish these objectives, we purified HSCs (CD150+CD48-LSK bone marrow cells) from old (23-26 months) GFP+ and young (3-4 months) CFP+ mice, combined them at known ratios, and injected them into non-irradiated young, non-irradiated old, or lethally irradiated young recipients. 22 hours later, these recipients were sacrificed and the ratio of GFP+ and CFP+ cells found homed to the bone marrow were compared to the ratio in which they were injected. In this way, we determined that relative to their young counterparts, the 22-hour homing efficiency of old CD150+CD48-LSK cells was consistently 2-fold lower when injected into young recipients. However, when the same cells were injected into non-irradiated old recipients, the relative homing efficiency varied from 2-fold lower to 1.1-fold higher. This suggests that the factors affecting homing are similar between individual young recipients, while the microenvironments of individual old recipients are variable in their relative ability to support homing of young and old HSCs. We recently demonstrated that the proportion of purified old HSCs that were functional when assayed clonally in vitro (cobblestone area forming cell [CAFC] assay) declined approximately 2-fold compared to young HSCs. To determine whether the non-homed HSCs were the same cells that were non-functional in the CAFC assay, we compared the CAFC seeding efficiency of old and young cells before and after homing. There was no functional improvement in homed old LSK150+48- cells, suggesting that the homing defect and reduced CAFC efficiency are non-overlapping and may be characteristics of all old HSCs. To determine if the homing microenvironment also had an effect on the function of the homed cells, CAFC assays were initiated with old and young HSCs before and after homing into each of the three recipient types. This analysis revealed that the function of the homed cells was significantly decreased for age-mismatched or irradiated recipients compared to pre-homed cells. In contrast, CAFC activity of young or old cells homed to non-irradiated age-matched recipients did not change. This suggests that the environment of an age mismatched and/or irradiated recipient can have a negative effect on the function of homed cells within a matter of hours. In conclusion, these co-homing studies reveal that compared to young HSCs, old HSCs are physically less able to home and migrate into the bone marrow within a 22-hour period post-transplantation. However, this relative homing defect is most pronounced and consistent when injected into young recipients. Second, the homing defect and reduced CAFC efficiency are non-overlapping and may be characteristics of all old HSCs. Third, old or young HSCs that do successfully home to irradiated or age-mismatched recipients become functionally compromised compared to pre-homed HSCs, suggesting that the homing defects of old HSCs can be ameliorated or exacerbated depending on the microenvironment in which they are transplanted. Disclosures: No relevant conflicts of interest to declare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Enoch采纳,获得10
刚刚
zmnzmnzmn应助Enoch采纳,获得10
刚刚
111111发布了新的文献求助20
1秒前
joybee完成签到,获得积分0
3秒前
hexuyanAA发布了新的文献求助10
3秒前
科研小菜完成签到 ,获得积分10
4秒前
小大夫完成签到 ,获得积分10
5秒前
NexusExplorer应助优雅的雁凡采纳,获得10
7秒前
mingjie完成签到,获得积分10
11秒前
13秒前
rainhowk完成签到,获得积分10
14秒前
传统的幻梦完成签到,获得积分10
15秒前
Coffee完成签到 ,获得积分10
16秒前
16秒前
鲤角兽完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
Xuan完成签到,获得积分10
21秒前
mzm发布了新的文献求助10
22秒前
蔡从安发布了新的文献求助10
24秒前
晨心完成签到,获得积分10
26秒前
科目三应助真实的一鸣采纳,获得10
26秒前
mzm关闭了mzm文献求助
27秒前
彭于晏应助aaa采纳,获得10
28秒前
29秒前
星星完成签到,获得积分10
34秒前
Mask完成签到,获得积分10
35秒前
pangpang完成签到,获得积分10
38秒前
39秒前
好吃的烤雞完成签到,获得积分10
40秒前
落寞溪灵完成签到 ,获得积分10
41秒前
aaa发布了新的文献求助10
43秒前
jenningseastera应助哈利波特采纳,获得10
44秒前
wrr完成签到,获得积分10
46秒前
不会吹口哨完成签到,获得积分10
51秒前
Kavin完成签到,获得积分10
52秒前
Young完成签到 ,获得积分10
53秒前
Dlan完成签到,获得积分10
54秒前
dreamsci完成签到 ,获得积分10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776116
求助须知:如何正确求助?哪些是违规求助? 3321700
关于积分的说明 10206716
捐赠科研通 3036792
什么是DOI,文献DOI怎么找? 1666450
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841