Effects of Age and Environment on Short-Term Homing and Function of Mouse Hematopoietic Stem Cells.

作者
Brad Dykstra,Sandra Olthof,Martha Ritsema,Gerald de Haan
出处
期刊:Blood [American Society of Hematology]
卷期号:116 (21): 1616-1616
标识
DOI:10.1182/blood.v116.21.1616.1616
摘要

Abstract Abstract 1616 The C57BL/6 mouse is one of the best studied models of hematopoietic stem cell (HSC) aging. Characteristic age-related changes include an increase in HSC frequency, a corresponding decrease in functional activity, myeloid skewing, and decreased in vivo homing ability. Studies of age-dependent differences in homing have primarily relied upon the injection of young or old bone marrow into irradiated recipients, with subsequent quantification of functional homed HSCs using secondary transplantation assays (e.g. Liang et al, Blood 2005). While this is a relevant and informative approach, it is limited because it measures homed cells indirectly, using an assay that itself is dependent on homing. To study this phenomenon more directly, we compared the short-term homing efficiency of purified HSCs from old and young mice by co-injecting them into old or young recipients. This approach enabled us to ascertain whether the previously reported decrease in homing efficiency is due to differences in physical homing to the bone marrow, or a reduced function per homed cell, or some combination of both. Second, it allowed us to determine the relationship between the decreased in vivo homing efficiency of old HSCs and their functional properties when assayed in a homing-independent stem cell assay. Third, by varying the age and irradiation status of the homing recipients, we could test directly the influence of these factors on HSC homing and function. To accomplish these objectives, we purified HSCs (CD150+CD48-LSK bone marrow cells) from old (23-26 months) GFP+ and young (3-4 months) CFP+ mice, combined them at known ratios, and injected them into non-irradiated young, non-irradiated old, or lethally irradiated young recipients. 22 hours later, these recipients were sacrificed and the ratio of GFP+ and CFP+ cells found homed to the bone marrow were compared to the ratio in which they were injected. In this way, we determined that relative to their young counterparts, the 22-hour homing efficiency of old CD150+CD48-LSK cells was consistently 2-fold lower when injected into young recipients. However, when the same cells were injected into non-irradiated old recipients, the relative homing efficiency varied from 2-fold lower to 1.1-fold higher. This suggests that the factors affecting homing are similar between individual young recipients, while the microenvironments of individual old recipients are variable in their relative ability to support homing of young and old HSCs. We recently demonstrated that the proportion of purified old HSCs that were functional when assayed clonally in vitro (cobblestone area forming cell [CAFC] assay) declined approximately 2-fold compared to young HSCs. To determine whether the non-homed HSCs were the same cells that were non-functional in the CAFC assay, we compared the CAFC seeding efficiency of old and young cells before and after homing. There was no functional improvement in homed old LSK150+48- cells, suggesting that the homing defect and reduced CAFC efficiency are non-overlapping and may be characteristics of all old HSCs. To determine if the homing microenvironment also had an effect on the function of the homed cells, CAFC assays were initiated with old and young HSCs before and after homing into each of the three recipient types. This analysis revealed that the function of the homed cells was significantly decreased for age-mismatched or irradiated recipients compared to pre-homed cells. In contrast, CAFC activity of young or old cells homed to non-irradiated age-matched recipients did not change. This suggests that the environment of an age mismatched and/or irradiated recipient can have a negative effect on the function of homed cells within a matter of hours. In conclusion, these co-homing studies reveal that compared to young HSCs, old HSCs are physically less able to home and migrate into the bone marrow within a 22-hour period post-transplantation. However, this relative homing defect is most pronounced and consistent when injected into young recipients. Second, the homing defect and reduced CAFC efficiency are non-overlapping and may be characteristics of all old HSCs. Third, old or young HSCs that do successfully home to irradiated or age-mismatched recipients become functionally compromised compared to pre-homed HSCs, suggesting that the homing defects of old HSCs can be ameliorated or exacerbated depending on the microenvironment in which they are transplanted. Disclosures: No relevant conflicts of interest to declare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力洋葱完成签到,获得积分10
1秒前
汉堡包应助信徒采纳,获得10
3秒前
汉堡包应助怡然白猫采纳,获得10
4秒前
yu发布了新的文献求助10
4秒前
5秒前
Singularity举报明亮的藏花求助涉嫌违规
6秒前
6秒前
陈年人少熬夜完成签到 ,获得积分10
6秒前
6秒前
susu发布了新的文献求助10
6秒前
木歌应助CC采纳,获得10
7秒前
7秒前
7秒前
maxueni完成签到,获得积分10
8秒前
优秀的牛青关注了科研通微信公众号
10秒前
10秒前
10秒前
温纲发布了新的文献求助10
10秒前
10秒前
12秒前
12秒前
qingfeng发布了新的文献求助10
12秒前
13秒前
JW.Huang发布了新的文献求助10
13秒前
啊啊啊lei发布了新的文献求助10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
gjww应助科研通管家采纳,获得10
14秒前
gjww应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
壳米应助科研通管家采纳,获得10
14秒前
觅云应助科研通管家采纳,获得10
14秒前
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
敬老院1号应助科研通管家采纳,获得30
15秒前
觅云应助科研通管家采纳,获得10
15秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Gymnastik für die Jugend 600
Chinese-English Translation Lexicon Version 3.0 500
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2384975
求助须知:如何正确求助?哪些是违规求助? 2091720
关于积分的说明 5260595
捐赠科研通 1818718
什么是DOI,文献DOI怎么找? 907078
版权声明 559114
科研通“疑难数据库(出版商)”最低求助积分说明 484518