纳米纤维素
纳米技术
纳米纤维
纳米材料
材料科学
化学工程
纳米尺度
胶体
工程类
纤维素
作者
Carlos Salas,Tiina Nypelö,Carlos Rodríguez‐Abreu,Carlos A. Carrillo,Orlando J. Rojas
标识
DOI:10.1016/j.cocis.2014.10.003
摘要
In this review we introduce recent advances in the development of cellulose nanomaterials and the construction of high order structures by applying some principles of colloid and interface science. These efforts take advantage of natural assemblies in the form of fibers that nature constructs by a biogenetic bottom-up process that results in hierarchical systems encompassing a wide range of characteristic sizes. Following the reverse process, a top-down deconstruction, cellulose materials can be cleaved from fiber cell walls. The resulting nanocelluloses, mainly cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC, i.e., defect-free, rod-like crystalline residues after acid hydrolysis of fibers), have been the subject of recent interest. This originates from the appealing intrinsic properties of nanocelluloses: nanoscale dimensions, high surface area, morphology, low density, chirality and thermo-mechanical performance. Directing their assembly into multiphase structures is a quest that can yield useful outcomes in many revolutionary applications. As such, we discuss the use of non-specific forces to create thin films of nanocellulose at the air–solid interface for applications in nano-coatings, sensors, etc. Assemblies at the liquid–liquid and air–liquid interfaces will be highlighted as means to produce Pickering emulsions, foams and aerogels. Finally, the prospects of a wide range of hybrid materials and other systems that can be manufactured via self and directed assembly will be introduced in light of the unique properties of nanocelluloses.
科研通智能强力驱动
Strongly Powered by AbleSci AI