Classification of topological insulators and superconductors in three spatial dimensions

拓扑绝缘体 物理 绕组编号 对称保护拓扑序 物理中的拓扑熵 超导电性 拓扑序 马约拉纳费米子 配对 费米子 拓扑(电路) 位置和动量空间 哈密顿量(控制论) 马约拉纳 量子力学 拓扑量子数 齐次空间 量子 组合数学 数学优化 数学分析 数学 几何学
作者
Andreas P. Schnyder,Shinsei Ryu,Akira Furusaki,Andreas W. W. Ludwig
出处
期刊:Physical Review B [American Physical Society]
卷期号:78 (19) 被引量:3077
标识
DOI:10.1103/physrevb.78.195125
摘要

We systematically study topological phases of insulators and superconductors (or superfluids) in three spatial dimensions. We find that there exist three-dimensional (3D) topologically nontrivial insulators or superconductors in five out of ten symmetry classes introduced in seminal work by Altland and Zirnbauer within the context of random matrix theory, more than a decade ago. One of these is the recently introduced ${\mathbb{Z}}_{2}$ topological insulator in the symplectic (or spin-orbit) symmetry class. We show that there exist precisely four more topological insulators. For these systems, all of which are time-reversal invariant in three dimensions, the space of insulating ground states satisfying certain discrete symmetry properties is partitioned into topological sectors that are separated by quantum phase transitions. Three of the above five topologically nontrivial phases can be realized as time-reversal invariant superconductors. In these the different topological sectors are characterized by an integer winding number defined in momentum space. When such 3D topological insulators are terminated by a two-dimensional surface, they support a number (which may be an arbitrary nonvanishing even number for singlet pairing) of Dirac fermion (Majorana fermion when spin-rotation symmetry is completely broken) surface modes which remain gapless under arbitrary perturbations of the Hamiltonian that preserve the characteristic discrete symmetries, including disorder. In particular, these surface modes completely evade Anderson localization from random impurities. These topological phases can be thought of as three-dimensional analogs of well-known paired topological phases in two spatial dimensions such as the spinless chiral $({p}_{x}\ifmmode\pm\else\textpm\fi{}i{p}_{y})$-wave superconductor (or Moore-Read Pfaffian state). In the corresponding topologically nontrivial (analogous to ``weak pairing'') and topologically trivial (analogous to ``strong pairing'') 3D phases, the wave functions exhibit markedly distinct behavior. When an electromagnetic U(1) gauge field and fluctuations of the gap functions are included in the dynamics, the superconducting phases with nonvanishing winding number possess nontrivial topological ground-state degeneracies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮小丸子完成签到 ,获得积分10
刚刚
DJ_Tokyo完成签到,获得积分0
3秒前
坦率雪枫完成签到 ,获得积分10
5秒前
风筝完成签到,获得积分10
6秒前
开放访天完成签到 ,获得积分0
7秒前
00完成签到 ,获得积分10
7秒前
粒子一号完成签到,获得积分10
8秒前
13秒前
robin完成签到 ,获得积分10
15秒前
abjz完成签到,获得积分10
18秒前
浮尘完成签到 ,获得积分0
22秒前
阿怪完成签到 ,获得积分10
24秒前
weng完成签到,获得积分10
25秒前
风信子deon01完成签到,获得积分10
27秒前
sysi完成签到 ,获得积分10
29秒前
严剑封完成签到,获得积分10
30秒前
jiaaniu完成签到 ,获得积分10
31秒前
乐乐应助张阳采纳,获得10
38秒前
44秒前
liz完成签到 ,获得积分10
44秒前
cyskdsn完成签到 ,获得积分10
45秒前
张阳发布了新的文献求助10
49秒前
研友_8K2QJZ完成签到,获得积分10
52秒前
风中的向卉完成签到 ,获得积分10
53秒前
yzhilson完成签到 ,获得积分0
53秒前
渔渔完成签到 ,获得积分10
57秒前
yyy完成签到 ,获得积分10
58秒前
Jenifer完成签到 ,获得积分10
59秒前
纯情的天奇完成签到 ,获得积分10
1分钟前
1分钟前
naiyantang完成签到 ,获得积分10
1分钟前
安静严青完成签到 ,获得积分10
1分钟前
1分钟前
fay1987完成签到,获得积分10
1分钟前
木又完成签到 ,获得积分10
1分钟前
paper reader完成签到,获得积分10
1分钟前
i2stay完成签到,获得积分10
1分钟前
不会学习的小郭完成签到 ,获得积分10
1分钟前
zzuwxj完成签到,获得积分10
1分钟前
chenxilulu完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Finance: Theory and Policy. 12th Edition 1000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4411748
求助须知:如何正确求助?哪些是违规求助? 3895514
关于积分的说明 12116060
捐赠科研通 3540684
什么是DOI,文献DOI怎么找? 1943048
邀请新用户注册赠送积分活动 983699
科研通“疑难数据库(出版商)”最低求助积分说明 880178