Learning Bi-typed Multi-relational Heterogeneous Graph via Dual Hierarchical Attention Networks

计算机科学 统计关系学习 理论计算机科学 节点(物理) 图形 班级(哲学) 编码器 关系演算 对偶(语法数字) 关系数据库 关系模型 人工智能 数据挖掘 工程类 文学类 艺术 操作系统 结构工程
作者
Yu Zhao,Shaopeng Wei,Huaming Du,Xingyan Chen,Qing Li,Fuzhen Zhuang,Ji Liu,Gang Kou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2112.13078
摘要

Bi-type multi-relational heterogeneous graph (BMHG) is one of the most common graphs in practice, for example, academic networks, e-commerce user behavior graph and enterprise knowledge graph. It is a critical and challenge problem on how to learn the numerical representation for each node to characterize subtle structures. However, most previous studies treat all node relations in BMHG as the same class of relation without distinguishing the different characteristics between the intra-class relations and inter-class relations of the bi-typed nodes, causing the loss of significant structure information. To address this issue, we propose a novel Dual Hierarchical Attention Networks (DHAN) based on the bi-typed multi-relational heterogeneous graphs to learn comprehensive node representations with the intra-class and inter-class attention-based encoder under a hierarchical mechanism. Specifically, the former encoder aggregates information from the same type of nodes, while the latter aggregates node representations from its different types of neighbors. Moreover, to sufficiently model node multi-relational information in BMHG, we adopt a newly proposed hierarchical mechanism. By doing so, the proposed dual hierarchical attention operations enable our model to fully capture the complex structures of the bi-typed multi-relational heterogeneous graphs. Experimental results on various tasks against the state-of-the-arts sufficiently confirm the capability of DHAN in learning node representations on the BMHGs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lin2019发布了新的文献求助10
刚刚
yyhgyg发布了新的文献求助10
刚刚
略略略发布了新的文献求助10
1秒前
RRui完成签到,获得积分10
1秒前
1秒前
L_x完成签到 ,获得积分10
1秒前
1秒前
NexusExplorer应助陌路孤星采纳,获得10
3秒前
JIA发布了新的文献求助10
3秒前
英俊亦巧完成签到,获得积分10
3秒前
归尘发布了新的文献求助10
3秒前
4秒前
科研通AI5应助zhangfan采纳,获得10
6秒前
6秒前
MrTStar完成签到 ,获得积分10
6秒前
7秒前
7秒前
在水一方应助LVMIN采纳,获得10
7秒前
小池同学发布了新的文献求助10
7秒前
甜瓜不熟完成签到,获得积分10
8秒前
8秒前
义气访曼完成签到 ,获得积分10
8秒前
文静的笑阳完成签到,获得积分10
8秒前
Lin应助绿酒采纳,获得10
9秒前
miemie66发布了新的文献求助10
9秒前
10秒前
11秒前
lixiangrui110发布了新的文献求助10
12秒前
罗氏集团完成签到,获得积分10
12秒前
科研通AI5应助qqq采纳,获得10
13秒前
13秒前
13秒前
14秒前
科研通AI5应助谢升澜采纳,获得10
14秒前
清脆大门完成签到,获得积分10
14秒前
小雨点完成签到 ,获得积分10
14秒前
lango发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353550
关于积分的说明 10365988
捐赠科研通 3069804
什么是DOI,文献DOI怎么找? 1685786
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766304