亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

How End-Capped Acceptors Regulate the Photovoltaic Performance of the Organic Solar Cells: A Detailed Density Functional Exploration of Their Impact on the A–D−π–D–A Type Small Molecular Electron Donors

深铬移 有机太阳能电池 分子间力 分子内力 材料科学 光伏系统 接受者 化学物理 激发态 密度泛函理论 光电子学 化学 带隙 电子供体 计算化学 分子 立体化学 原子物理学 物理 有机化学 光学 生态学 催化作用 荧光 生物 聚合物 凝聚态物理
作者
Paramasivam Mahalingavelar
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:36 (4): 2095-2107 被引量:44
标识
DOI:10.1021/acs.energyfuels.1c04272
摘要

Recent investigations on organic solar cells have demonstrated the superior photovoltaic performance of A−π–D−π–A type small molecular electron donors (SMEDs) compared to that of the D–A(π)–A and D–A(π)–D molecular frameworks because of their intense intramolecular charge transfer transitions, narrow band gap, and broad optical profiles at the near-infrared region. These characteristic features mainly originated from their molecular functionalization of the core and end-capped acceptor building blocks, which generate quite a greater impact through the wavefunction overlap of the intra-/intermolecular interactions. Nonetheless, SMEDs with various reported end-capped acceptors, 1,3-indanedione (IND), N-alkyl rhodanine (NAR), and dicyanovinylene (DCV), exhibited excellent photovoltaic performance, the reason behind this phenomenon remains unexplained. To gain better insights in this regard, we have designed a series of SMEDs named DFR, DFM, and DFI by embedding these exceptionally performing NAR, DCV, and IND end-capping units, respectively, into a newly designed A–D−π–D–A molecular framework. A detailed investigation was carried out to understand the influence of end-capped acceptors on the photovoltaic parameters at the molecular level using density functional theory (DFT) and time-dependent DFT methods. Exploration of this study reveals that the NAR unit of the A–D−π–D–A framework (DFR) enabled a bathochromic shift compared to that of the DCV counterpart (DFI), a reverse pattern of absorption to that of the widely reported A−π–D−π–A system. A series of charge transfer parameters related to excited state properties including charge density difference, amount of charge transferred (qCT), charge transfer distance (dCT), dipole variation, H-index, t-index, and hole–electron overlap (S±) and other components such as ionization potential, electron affinity, delocalization, and reorganization energies were computed. In addition, photovoltaic parameters such as exciton binding energy and open-circuit voltage have been systematically evaluated with respect to the fullerene and Y6 electron acceptors. The antiaromatic characteristics of the cyclic NAR and IND acceptors were well-demonstrated using the nucleus-independent chemical shift, 2D isochemical shielding surface, and anisotropy of the induced current density analyses. This study highlights that the performance of each acceptor is distinctively different because it not only can be determined from its electron-withdrawing strength but also depends on its potential to allow the charge density population. The greater heterofunctionalities of NAR and IND acceptors could help increase the Jsc due to its strong accommodating potential of electron density population at the peripherals, but the minimized contribution from the sp-hybridized C≡N unit of the DCV acceptor failed in this regard. The computed results followed an excellent agreement with the experimental observations. The results obtained from this study would be helpful for the researchers to gain a better understanding of the chemistry behind the relationship between the structure of the end-capped acceptors and photovoltaic activity and suggesting the beneficial features of including more heterofunctionalities into large-sized terminal acceptors: (1) band gap narrowing through lowest unoccupied molecular orbital stabilization; (2) efficient ICT transitions; and (3) greater accommodating potential of charge density population at the peripherals, which could help the facilitation of charge transport at the D−A interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
烤冷面发布了新的文献求助10
7秒前
CipherSage应助叙温雨采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
我是老大应助科研通管家采纳,获得10
29秒前
烤冷面发布了新的文献求助10
32秒前
33秒前
Joshua发布了新的文献求助10
34秒前
49秒前
叙温雨发布了新的文献求助10
53秒前
张宇发布了新的文献求助10
1分钟前
1分钟前
YElv完成签到,获得积分10
1分钟前
dragon发布了新的文献求助10
1分钟前
zqq完成签到,获得积分0
1分钟前
cl完成签到,获得积分10
1分钟前
汉堡包应助叙温雨采纳,获得10
1分钟前
捉迷藏完成签到,获得积分0
1分钟前
Syun完成签到,获得积分10
1分钟前
dragon关注了科研通微信公众号
1分钟前
TX发布了新的文献求助100
2分钟前
2分钟前
叙温雨发布了新的文献求助10
2分钟前
充电宝应助是各种蕉采纳,获得10
2分钟前
GingerF应助TX采纳,获得100
2分钟前
是各种蕉完成签到,获得积分10
2分钟前
ding应助陈词丶采纳,获得10
2分钟前
SciGPT应助terry采纳,获得10
3分钟前
天天完成签到 ,获得积分10
3分钟前
逮劳完成签到 ,获得积分10
3分钟前
3分钟前
vv发布了新的文献求助30
3分钟前
小珂完成签到,获得积分10
3分钟前
waomi完成签到 ,获得积分10
3分钟前
hhhhhhhhhh完成签到 ,获得积分10
3分钟前
3分钟前
叙温雨发布了新的文献求助10
4分钟前
uwasa完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291608
求助须知:如何正确求助?哪些是违规求助? 4442578
关于积分的说明 13830173
捐赠科研通 4325643
什么是DOI,文献DOI怎么找? 2374413
邀请新用户注册赠送积分活动 1369703
关于科研通互助平台的介绍 1333924