Predicting Treatment Response in Schizophrenia With Magnetic Resonance Imaging and Polygenic Risk Score

多基因风险评分 功能磁共振成像 精神分裂症(面向对象编程) 磁共振成像 维加维斯 弗雷明翰风险评分 医学 内科学 心理学 生物 神经科学 精神科 遗传学 放射科 基因 单核苷酸多态性 基因型 疾病
作者
Meng Wang,Ke Hu,Lingzhong Fan,Hao Yan,Peng Li,Tianzi Jiang,Bing Liu
出处
期刊:Frontiers in Genetics [Frontiers Media SA]
卷期号:13 被引量:20
标识
DOI:10.3389/fgene.2022.848205
摘要

Background: Prior studies have separately demonstrated that magnetic resonance imaging (MRI) and schizophrenia polygenic risk score (PRS) are predictive of antipsychotic medication treatment outcomes in schizophrenia. However, it remains unclear whether MRI combined with PRS can provide superior prognostic performance. Besides, the relative importance of these measures in predictions is not investigated. Methods: We collected 57 patients with schizophrenia, all of which had baseline MRI and genotype data. All these patients received approximately 6 weeks of antipsychotic medication treatment. Psychotic symptom severity was assessed using the Positive and Negative Syndrome Scale (PANSS) at baseline and follow-up. We divided these patients into responders ( N = 20) or non-responders ( N = 37) based on whether their percentages of PANSS total reduction were above or below 50%. Nine categories of MRI measures and PRSs with 145 different p -value thresholding ranges were calculated. We trained machine learning classifiers with these baseline predictors to identify whether a patient was a responder or non-responder. Results: The extreme gradient boosting (XGBoost) technique was applied to build binary classifiers. Using a leave-one-out cross-validation scheme, we achieved an accuracy of 86% with all MRI and PRS features. Other metrics were also estimated, including sensitivity (85%), specificity (86%), F1-score (81%), and area under the receiver operating characteristic curve (0.86). We found excluding a single feature category of gray matter volume (GMV), amplitude of low-frequency fluctuation (ALFF), and surface curvature could lead to a maximum accuracy drop of 10.5%. These three categories contributed more than half of the top 10 important features. Besides, removing PRS features caused a modest accuracy drop (8.8%), which was not the least decrease (1.8%) among all feature categories. Conclusions: Our classifier using both MRI and PRS features was stable and not biased to predicting either responder or non-responder. Combining with MRI measures, PRS could provide certain extra predictive power of antipsychotic medication treatment outcomes in schizophrenia. PRS exhibited medium importance in predictions, lower than GMV, ALFF, and surface curvature, but higher than measures of cortical thickness, cortical volume, and surface sulcal depth. Our findings inform the contributions of PRS in predictions of treatment outcomes in schizophrenia.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
西西完成签到 ,获得积分10
1秒前
星河呵呵呵关注了科研通微信公众号
1秒前
aaa发布了新的文献求助10
1秒前
kzn发布了新的文献求助10
1秒前
2秒前
Cyneburg完成签到,获得积分10
3秒前
单薄谷秋发布了新的文献求助10
3秒前
ZhouXB发布了新的文献求助10
3秒前
4秒前
科研通AI6应助顺利的雪莲采纳,获得10
6秒前
科研通AI6应助中中会发光采纳,获得10
6秒前
问凝发布了新的文献求助10
7秒前
tt完成签到,获得积分20
7秒前
无极微光应助Akari采纳,获得20
7秒前
8秒前
丘比特应助橘子屿布丁采纳,获得10
8秒前
空勒发布了新的文献求助10
9秒前
10秒前
xing发布了新的文献求助40
11秒前
11秒前
细心飞鸟完成签到,获得积分10
12秒前
小波波波发布了新的文献求助10
13秒前
英姑应助LBB采纳,获得10
13秒前
13秒前
14秒前
科研通AI6应助紧张的十三采纳,获得10
14秒前
雪飞杨发布了新的文献求助10
15秒前
傲娇的以松完成签到,获得积分10
15秒前
17秒前
Lucas应助biu采纳,获得10
18秒前
19秒前
19秒前
20秒前
董昌铭发布了新的文献求助10
21秒前
22秒前
NattyPoe完成签到,获得积分10
22秒前
单薄谷秋发布了新的文献求助10
23秒前
23秒前
23秒前
种草匠完成签到,获得积分10
23秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5500377
求助须知:如何正确求助?哪些是违规求助? 4596831
关于积分的说明 14456566
捐赠科研通 4530131
什么是DOI,文献DOI怎么找? 2482568
邀请新用户注册赠送积分活动 1466311
关于科研通互助平台的介绍 1439033