Predicting Treatment Response in Schizophrenia With Magnetic Resonance Imaging and Polygenic Risk Score

多基因风险评分 功能磁共振成像 精神分裂症(面向对象编程) 磁共振成像 维加维斯 弗雷明翰风险评分 医学 内科学 心理学 生物 神经科学 精神科 遗传学 放射科 基因 单核苷酸多态性 基因型 疾病
作者
Meng Wang,Ke Hu,Lingzhong Fan,Hao Yan,Peng Li,Tianzi Jiang,Bing Liu
出处
期刊:Frontiers in Genetics [Frontiers Media]
卷期号:13 被引量:20
标识
DOI:10.3389/fgene.2022.848205
摘要

Background: Prior studies have separately demonstrated that magnetic resonance imaging (MRI) and schizophrenia polygenic risk score (PRS) are predictive of antipsychotic medication treatment outcomes in schizophrenia. However, it remains unclear whether MRI combined with PRS can provide superior prognostic performance. Besides, the relative importance of these measures in predictions is not investigated. Methods: We collected 57 patients with schizophrenia, all of which had baseline MRI and genotype data. All these patients received approximately 6 weeks of antipsychotic medication treatment. Psychotic symptom severity was assessed using the Positive and Negative Syndrome Scale (PANSS) at baseline and follow-up. We divided these patients into responders ( N = 20) or non-responders ( N = 37) based on whether their percentages of PANSS total reduction were above or below 50%. Nine categories of MRI measures and PRSs with 145 different p -value thresholding ranges were calculated. We trained machine learning classifiers with these baseline predictors to identify whether a patient was a responder or non-responder. Results: The extreme gradient boosting (XGBoost) technique was applied to build binary classifiers. Using a leave-one-out cross-validation scheme, we achieved an accuracy of 86% with all MRI and PRS features. Other metrics were also estimated, including sensitivity (85%), specificity (86%), F1-score (81%), and area under the receiver operating characteristic curve (0.86). We found excluding a single feature category of gray matter volume (GMV), amplitude of low-frequency fluctuation (ALFF), and surface curvature could lead to a maximum accuracy drop of 10.5%. These three categories contributed more than half of the top 10 important features. Besides, removing PRS features caused a modest accuracy drop (8.8%), which was not the least decrease (1.8%) among all feature categories. Conclusions: Our classifier using both MRI and PRS features was stable and not biased to predicting either responder or non-responder. Combining with MRI measures, PRS could provide certain extra predictive power of antipsychotic medication treatment outcomes in schizophrenia. PRS exhibited medium importance in predictions, lower than GMV, ALFF, and surface curvature, but higher than measures of cortical thickness, cortical volume, and surface sulcal depth. Our findings inform the contributions of PRS in predictions of treatment outcomes in schizophrenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
孤标傲世发布了新的文献求助10
2秒前
华仔应助姜鲅采纳,获得10
2秒前
ninaxieuuu完成签到,获得积分20
2秒前
3秒前
3秒前
Guo21发布了新的文献求助10
4秒前
自由航空发布了新的文献求助30
4秒前
FashionBoy应助热情南蕾采纳,获得10
4秒前
科研通AI5应助机智宛秋采纳,获得100
5秒前
5秒前
浙大波波完成签到 ,获得积分10
5秒前
阿瑞发布了新的文献求助10
5秒前
5秒前
6秒前
谢建国完成签到,获得积分10
6秒前
gui完成签到,获得积分10
6秒前
6秒前
佳佳李发布了新的文献求助10
6秒前
哭泣茗完成签到,获得积分10
7秒前
透明人完成签到,获得积分10
7秒前
7秒前
7秒前
炙热怜寒发布了新的文献求助30
7秒前
8秒前
8秒前
8秒前
赫连紫发布了新的文献求助10
9秒前
席鸿涛发布了新的文献求助10
9秒前
9秒前
lxx发布了新的文献求助40
10秒前
哇塞发布了新的文献求助10
10秒前
10秒前
10秒前
英姑应助雪落你看不见采纳,获得10
10秒前
victorchen发布了新的文献求助10
11秒前
111完成签到,获得积分10
11秒前
wop111应助虎虎采纳,获得20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
饲料原料图鉴与质量控制手册 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4864317
求助须知:如何正确求助?哪些是违规求助? 4157679
关于积分的说明 12890293
捐赠科研通 3910584
什么是DOI,文献DOI怎么找? 2148152
邀请新用户注册赠送积分活动 1166892
关于科研通互助平台的介绍 1068971