Smartphone-Based Colorimetric Analysis of Urine Test Strips for At-Home Prenatal Care

计算机科学 尿检 人工智能 连环画 卷积神经网络 色调 计算机视觉 条状物 模式识别(心理学) 尿 医学 漫画 内分泌学
作者
Madeleine Flaucher,Michael Nissen,Katharina M. Jaeger,Adriana Titzmann,Constanza Pontones,Hanna Huebner,Peter A. Fasching,Matthias W. Beckmann,Stefan Gradl,Bjoern M. Eskofier
出处
期刊:IEEE Journal of Translational Engineering in Health and Medicine [Institute of Electrical and Electronics Engineers]
卷期号:10: 1-9 被引量:14
标识
DOI:10.1109/jtehm.2022.3179147
摘要

Objective: Clinical urine tests are a key component of prenatal care. As of now, urine test strips are evaluated through a time consuming, often error-prone and operator-dependent visual color comparison of test strips and reference cards by medical staff. Methods and procedures: This work presents an automated pipeline for urinalysis with urine test strips using smartphone camera images in home environments, combining several image processing and color combination techniques. Our approach is applicable to off-the-shelf test strips in home conditions with no additional hardware required. For development and evaluation of our pipeline we collected image data from two sources: i) A user study (26 participants, 150 images) and ii) a lab study (135 images). Results: We trained a region-based convolutional neural network that is able to detect the urine test strip location and orientation in images with a wide variety of light conditions, backgrounds and perspectives with an accuracy of 85.5 %. The reference card can be robustly detected through a feature matching approach in 98.6% of the images. Color comparison by Hue channel (0.81 F1-Score), Matching factor (0.80 F1-Score) and Euclidean distance (0.70 F1-Score) were evaluated to determine the urinalysis results. Conclusion: We show that an automated smartphone-based colorimetric analysis of urine test strips in a home environment is feasible. It facilitates examinations and provides the possibility to shift care into an at-home environment. Clinical impact: The findings demonstrate that routine urine examinations can be transferred into the home environment using a smartphone. Simultaneously, human error is avoided, accuracy is increased and medical staff is relieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lysixsixsix完成签到,获得积分10
2秒前
3秒前
天天快乐应助lucky采纳,获得10
3秒前
orixero应助li采纳,获得10
3秒前
4秒前
研友_VZG7GZ应助包容的玉兰采纳,获得10
4秒前
joey完成签到,获得积分10
5秒前
6秒前
JamesPei应助memory采纳,获得10
7秒前
7秒前
8秒前
tip发布了新的文献求助10
8秒前
8秒前
HSY完成签到,获得积分10
8秒前
10秒前
艺晨发布了新的文献求助10
10秒前
半柚发布了新的文献求助10
11秒前
秋子发布了新的文献求助10
11秒前
Orange应助漫漫长夜采纳,获得10
13秒前
14秒前
究极的怪发布了新的文献求助10
14秒前
16秒前
18秒前
lixia发布了新的文献求助30
19秒前
19秒前
19秒前
20秒前
啦啦啦发布了新的文献求助10
21秒前
22秒前
xty完成签到,获得积分10
22秒前
23秒前
Jean0603应助asdfqwer采纳,获得10
24秒前
25秒前
xty发布了新的文献求助10
25秒前
25秒前
skycool发布了新的文献求助10
25秒前
eros发布了新的文献求助10
26秒前
木木发布了新的文献求助10
28秒前
29秒前
科研通AI5应助霸气的金鱼采纳,获得30
29秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Synthesis of Solid Catalysts 200
半导体金属氧化物纳米材料:合成、气敏特性及气体传感应用 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832896
求助须知:如何正确求助?哪些是违规求助? 3375313
关于积分的说明 10488554
捐赠科研通 3094944
什么是DOI,文献DOI怎么找? 1704149
邀请新用户注册赠送积分活动 819788
科研通“疑难数据库(出版商)”最低求助积分说明 771623