Machine Learning in the Prediction of Trauma Outcomes: A Systematic Review

机器学习 人工智能 医学 数据提取 梅德林 标准化 系统回顾 人口 计算机科学 政治学 环境卫生 操作系统 法学
作者
Timothy Zhang,Anton Nikouline,David Lightfoot,Brodie Nolan
出处
期刊:Annals of Emergency Medicine [Elsevier BV]
卷期号:80 (5): 440-455 被引量:18
标识
DOI:10.1016/j.annemergmed.2022.05.011
摘要

Machine learning models carry unique potential as decision-making aids and prediction tools for improving patient care. Traumatically injured patients provide a uniquely heterogeneous population with severe injuries that can be difficult to predict. Given the relative infancy of machine learning applications in medicine, this systematic review aimed to better understand the current state of machine learning development and implementation to help create a basis for future research.We conducted a systematic review from inception to May 2021, using Embase, MEDLINE through Ovid, Web of Science, Google Scholar, and relevant gray literature, for uses of machine learning in predicting the outcomes of trauma patients. The screening and data extraction were performed by 2 independent reviewers.Of the 14,694 identified articles screened, 67 were included for data extraction. Artificial neural networks comprised the most commonly used model, and mortality was the most prevalent outcome of interest. In terms of machine learning model development, there was a lack of studies that employed external validation, feature selection methods, and performed formal calibration testing. Significant heterogeneity in reporting was also observed between the machine learning models employed, patient populations, performance metrics, and features employed.This review highlights the heterogeneity in the development and reporting of machine learning models for the prediction of trauma outcomes. While these models present an area of opportunity as an ancillary to clinical decision-making, we recommend more standardization and rigorous guidelines for the development of future models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马昌进完成签到,获得积分20
1秒前
xxm完成签到,获得积分10
2秒前
祖问筠完成签到,获得积分10
2秒前
三杠完成签到 ,获得积分10
4秒前
羊小受完成签到,获得积分10
4秒前
李燕伟完成签到 ,获得积分10
6秒前
yangjinru完成签到 ,获得积分10
7秒前
苗儿完成签到,获得积分10
8秒前
9秒前
宋子虎完成签到 ,获得积分10
9秒前
10秒前
周新哲完成签到 ,获得积分10
12秒前
欢愉调完成签到 ,获得积分10
15秒前
我是老大应助清风徐来采纳,获得10
15秒前
英俊的铭应助echo采纳,获得10
16秒前
淼淼发布了新的文献求助10
16秒前
263发布了新的文献求助10
16秒前
含蓄的静竹完成签到 ,获得积分10
17秒前
嘻嘻嘻完成签到,获得积分10
18秒前
似雨若离完成签到,获得积分10
19秒前
21秒前
21秒前
尊敬的寄松完成签到 ,获得积分10
22秒前
fanfan完成签到 ,获得积分10
23秒前
Wu完成签到,获得积分10
25秒前
svv发布了新的文献求助10
27秒前
研友_yLpYkn完成签到,获得积分10
28秒前
28秒前
Yue完成签到 ,获得积分10
28秒前
30秒前
高荣锴发布了新的文献求助10
33秒前
9202211125完成签到,获得积分10
34秒前
34秒前
34秒前
36秒前
淼淼完成签到,获得积分20
36秒前
36秒前
chdhg完成签到 ,获得积分10
37秒前
xyb发布了新的文献求助10
37秒前
满意机器猫完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304604
求助须知:如何正确求助?哪些是违规求助? 4451030
关于积分的说明 13850475
捐赠科研通 4338204
什么是DOI,文献DOI怎么找? 2381824
邀请新用户注册赠送积分活动 1376904
关于科研通互助平台的介绍 1344261