Machine Learning in the Prediction of Trauma Outcomes: A Systematic Review

机器学习 人工智能 医学 数据提取 梅德林 标准化 系统回顾 人口 计算机科学 政治学 环境卫生 操作系统 法学
作者
Timothy Zhang,Anton Nikouline,David Lightfoot,Brodie Nolan
出处
期刊:Annals of Emergency Medicine [Elsevier BV]
卷期号:80 (5): 440-455 被引量:17
标识
DOI:10.1016/j.annemergmed.2022.05.011
摘要

Machine learning models carry unique potential as decision-making aids and prediction tools for improving patient care. Traumatically injured patients provide a uniquely heterogeneous population with severe injuries that can be difficult to predict. Given the relative infancy of machine learning applications in medicine, this systematic review aimed to better understand the current state of machine learning development and implementation to help create a basis for future research.We conducted a systematic review from inception to May 2021, using Embase, MEDLINE through Ovid, Web of Science, Google Scholar, and relevant gray literature, for uses of machine learning in predicting the outcomes of trauma patients. The screening and data extraction were performed by 2 independent reviewers.Of the 14,694 identified articles screened, 67 were included for data extraction. Artificial neural networks comprised the most commonly used model, and mortality was the most prevalent outcome of interest. In terms of machine learning model development, there was a lack of studies that employed external validation, feature selection methods, and performed formal calibration testing. Significant heterogeneity in reporting was also observed between the machine learning models employed, patient populations, performance metrics, and features employed.This review highlights the heterogeneity in the development and reporting of machine learning models for the prediction of trauma outcomes. While these models present an area of opportunity as an ancillary to clinical decision-making, we recommend more standardization and rigorous guidelines for the development of future models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
谷粱不愁完成签到,获得积分10
6秒前
DOU完成签到 ,获得积分20
7秒前
Svanur发布了新的文献求助30
8秒前
sxmt123456789发布了新的文献求助10
9秒前
七八九完成签到 ,获得积分10
10秒前
顺利汉堡完成签到,获得积分10
11秒前
13秒前
浮游完成签到,获得积分0
14秒前
jiaying完成签到 ,获得积分10
17秒前
汉堡包应助时来运转采纳,获得10
26秒前
英姑应助胡呼呼采纳,获得10
30秒前
李爱国应助sxmt123456789采纳,获得10
31秒前
31秒前
NNUsusan完成签到,获得积分10
32秒前
风中泰坦完成签到,获得积分10
32秒前
丘比特应助玉1采纳,获得10
34秒前
城北徐公完成签到,获得积分10
34秒前
风中泰坦发布了新的文献求助10
39秒前
星辰大海应助锤子采纳,获得10
41秒前
小蘑菇应助bbb采纳,获得10
42秒前
CodeCraft应助科研通管家采纳,获得10
44秒前
斯文败类应助科研通管家采纳,获得10
44秒前
null应助科研通管家采纳,获得10
44秒前
香蕉觅云应助科研通管家采纳,获得10
44秒前
天天快乐应助科研通管家采纳,获得10
44秒前
斯文败类应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
CodeCraft应助科研通管家采纳,获得10
45秒前
打打应助科研通管家采纳,获得10
45秒前
Hour应助科研通管家采纳,获得10
45秒前
浮游应助科研通管家采纳,获得10
45秒前
浮游应助科研通管家采纳,获得10
45秒前
彭于晏应助科研通管家采纳,获得30
45秒前
45秒前
45秒前
45秒前
GPTea应助后来采纳,获得50
46秒前
46秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4777790
求助须知:如何正确求助?哪些是违规求助? 4108948
关于积分的说明 12710661
捐赠科研通 3830750
什么是DOI,文献DOI怎么找? 2113052
邀请新用户注册赠送积分活动 1136684
关于科研通互助平台的介绍 1020720