A New Multisensor Information Fusion Technique Using Processed Images: Algorithms and Application on Hydraulic Components

计算机科学 传感器融合 断层(地质) 算法 加权 图像融合 特征提取 人工智能 信号处理 计算机视觉 模式识别(心理学) 图像(数学) 雷达 地质学 放射科 地震学 电信 医学
作者
Jinchuan Shi,Yan Ren,Jiyan Yi,Weifang Sun,Hesheng Tang,Jiawei Xiang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:17
标识
DOI:10.1109/tim.2022.3171608
摘要

Multisensor fusion technique is used to combine the complementary information source from the multiple sensors. However, the multisensor data are obviously different with the characteristics of complex types, different dimensions, or different weights, which is easy to cause the difficulty of the fusion and the decline of the ability of information representation although the fault information is enriched. Therefore, a new multisensor information fusion technique using the processed images is proposed. The core of this technique is to convert the information from different sensors (especially for heterogeneous sensors) into images for weighting feature matrix and constructing image fusion to realize fault diagnosis. In the technique, the processed images can enhance the weak signal in a complex environment and avoid the weak applicability caused by multisensor sampling differences. The proposed algorithm is based on an improved data-enhanced Gramian angular sum field (DE-GASF) and multichannel dual attention convolutional neural network (MC-DA-CNN). Also, the performance of the algorithm is validated by experiments on basic hydraulic components, taking axial piston pump and hydraulic reversing valve as an example. The experimental results show that the average fault diagnosis accuracy of axial piston pump and hydraulic reversing valve is 97.6% and 99.4%, respectively, but the traditional monitoring method and single-sensor intelligent method are difficult to detect their faults due to their bad working environment. In addition, a comparative analysis of the image processing method and the time-domain signal processing method confirms the effectiveness of the proposed technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷鹤轩发布了新的文献求助10
刚刚
628完成签到,获得积分10
1秒前
miao完成签到,获得积分10
1秒前
蔡雨岑发布了新的文献求助10
1秒前
研友_VZG7GZ应助LI采纳,获得10
2秒前
科研通AI6应助HJJHJH采纳,获得10
2秒前
xunuo发布了新的文献求助10
2秒前
Sue完成签到,获得积分10
3秒前
3秒前
林海完成签到 ,获得积分10
4秒前
Ava应助ng9jR2采纳,获得10
5秒前
JuanWei给JuanWei的求助进行了留言
5秒前
south完成签到,获得积分10
5秒前
叨叨完成签到,获得积分10
5秒前
不忘初心发布了新的文献求助10
5秒前
YYY完成签到,获得积分20
6秒前
风中思松完成签到,获得积分10
6秒前
6秒前
尧尧完成签到,获得积分10
6秒前
Lucas应助蔡雨岑采纳,获得10
6秒前
愚研丁真发布了新的文献求助10
6秒前
赘婿应助特安谭采纳,获得10
7秒前
蓝调芋泥完成签到,获得积分20
7秒前
丹牛发布了新的文献求助30
7秒前
7秒前
8秒前
hi派大星完成签到,获得积分10
8秒前
pluto应助雅馨芬芳采纳,获得10
8秒前
8秒前
张小北完成签到,获得积分10
9秒前
杜大帅发布了新的文献求助20
9秒前
小盼完成签到,获得积分10
10秒前
心灵美的大地完成签到,获得积分10
10秒前
10秒前
111发布了新的文献求助10
11秒前
SciGPT应助tefuir0707采纳,获得10
11秒前
茭白发布了新的文献求助10
12秒前
小野菌发布了新的文献求助10
13秒前
毛豆应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5013137
求助须知:如何正确求助?哪些是违规求助? 4254100
关于积分的说明 13257250
捐赠科研通 4057253
什么是DOI,文献DOI怎么找? 2219175
邀请新用户注册赠送积分活动 1228649
关于科研通互助平台的介绍 1151237