预测性维护
支持向量机
快速傅里叶变换
GSM演进的增强数据速率
阿杜伊诺
计算机科学
断层(地质)
状态监测
分类器(UML)
故障检测与隔离
可靠性工程
工程类
嵌入式系统
人工智能
算法
电气工程
地质学
地震学
执行机构
作者
Javier de las Morenas,Francisco Moya
标识
DOI:10.1109/icps51978.2022.9816921
摘要
Predictive maintenance is one of the premises of the Industry 4.0. A condition monitoring and fault diagnostic never seen before are possible with the new technologies embracing the digitalisation. This paper presents an edge computing approach for the predictive maintenance of electrical machines based on motor current signature analysis (MCSA), using Fast Fourier Transform (FFT) and a Support Vector Machine (SVM) classifier. A broken rotor bars and eccentricity fault detection are implemented on Arduino platform, providing a low-cost solution affordable for small and medium enterprises. The system has been tested in a lathe in one of the laboratories of the Mining and Industrial School of Almaden (UCLM) with satisfactory results.
科研通智能强力驱动
Strongly Powered by AbleSci AI