RNA剪接
计算生物学
选择性拼接
生物
核糖核酸
反式剪接
基因
小基因
细胞
外显子剪接增强剂
遗传学
信使核糖核酸
作者
Julia Olivieri,Roozbeh Dehghannasiri,Julia Salzman
出处
期刊:Nature Methods
[Nature Portfolio]
日期:2022-03-01
卷期号:19 (3): 307-310
被引量:26
标识
DOI:10.1038/s41592-022-01400-x
摘要
Detecting single-cell-regulated splicing from droplet-based technologies is challenging. Here, we introduce the splicing Z score (SpliZ), an annotation-free statistical method to detect regulated splicing in single-cell RNA sequencing. We applied the SpliZ to human lung cells, discovering hundreds of genes with cell-type-specific splicing patterns including ones with potential implications for basic and translational biology. The Splicing Z Score (SpliZ) provides single-cell-level quantification of alternative splicing with improved statistical power.
科研通智能强力驱动
Strongly Powered by AbleSci AI