溶血酶-
闪烁体
发光
光释光
高分辨率
分辨率(逻辑)
图像分辨率
发光测量
材料科学
核医学
光学
物理
光电子学
医学
探测器
计算机科学
遥感
地理
人工智能
作者
Mads L. Jensen,Jacob S. Nyemann,L.P. Muren,Brian Julsgaard,Péter Balling,Rosana M. Turtos
标识
DOI:10.1038/s41598-022-12255-9
摘要
In this contribution, we study the optically stimulated luminescence (OSL) exhibited by commercial [Formula: see text]:Ce crystals. This photon emission mechanism, complementary to scintillation, can trap a fraction of radiation energy deposited in the material and provides sufficient signal to develop a novel post-irradiation 3D dose readout. We characterize the OSL emission through spectrally and temporally resolved measurements and monitor the dose linearity response over a broad range. The measurements show that the [Formula: see text] centers responsible for scintillation also function as recombination centers for the OSL mechanism. The capture to OSL-active traps competes with scintillation originating from the direct non-radiative energy transfer to the luminescent centers. An OSL response on the order of 100 ph/MeV is estimated. We demonstrate the imaging capabilities provided by such an OSL photon yield using a proof-of-concept optical readout method. A 0.1 [Formula: see text] spatial resolution for doses as low as 0.5 Gy is projected using a cubic crystal to image volumetric dose profiles. While OSL degrades the intrinsic scintillating performance by reducing the number of scintillation photons emitted following the passage of ionizing radiation, it can encode highly resolved spatial information of the interaction point of the particle. This feature combines ionizing radiation spectroscopy and 3D reusable dose imaging in a single material.
科研通智能强力驱动
Strongly Powered by AbleSci AI