热重分析
热解
活化能
热解炭
傅里叶变换红外光谱
质谱法
红外光谱学
成核
化学
材料科学
化学工程
有机化学
色谱法
工程类
作者
Weijie Xu,Jingyong Liu,Ziyi Ding,Jiawei Fu,Fatih Evrendilek,Wei Xie,Yao He
标识
DOI:10.1016/j.scitotenv.2022.156710
摘要
Given the COVID-19 epidemic, the quantity of hazardous medical wastes has risen unprecedentedly. This study characterized and verified the pyrolysis mechanisms and volatiles products of medical mask belts (MB), mask faces (MF), and infusion tubes (IT) via thermogravimetric, infrared spectroscopy, thermogravimetric-Fourier transform infrared spectroscopy, and pyrolysis-gas chromatography/mass spectrometry analyses. Iso-conversional methods were employed to estimate activation energy, while the best-fit artificial neural network was adopted for the multi-objective optimization. MB and MF started their thermal weight losses at 375.8 °C and 414.7 °C, respectively, while IT started to degrade at 227.3 °C. The average activation energies were estimated at 171.77, 232.79, 105.14, and 205.76 kJ/mol for MB, MF, and the first and second IT stages, respectively. Nucleation growth for MF and MB and geometrical contraction for IT best described the pyrolysis behaviors. Their main gaseous products were classified, with a further proposal of their initial cracking mechanisms and secondary reaction pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI