Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF

极限抗拉强度 抗压强度 人工神经网络 Boosting(机器学习) 机器学习 随机森林 多层感知器 支持向量机 计算机科学 人工智能 材料科学 复合材料
作者
Afnan Nafees,Sherbaz Khan,Muhammad Faisal Javed,Raid Alrowais,Abdeliazim Mustafa Mohamed,Abdullah Mohamed,Nikolai Vatin
出处
期刊:Polymers [Multidisciplinary Digital Publishing Institute]
卷期号:14 (8): 1583-1583 被引量:74
标识
DOI:10.3390/polym14081583
摘要

Increased population necessitates an expansion of infrastructure and urbanization, resulting in growth in the construction industry. A rise in population also results in an increased plastic waste, globally. Recycling plastic waste is a global concern. Utilization of plastic waste in concrete can be an optimal solution from recycling perspective in construction industry. As environmental issues continue to grow, the development of predictive machine learning models is critical. Thus, this study aims to create modelling tools for estimating the compressive and tensile strengths of plastic concrete. For predicting the strength of concrete produced with plastic waste, this research integrates machine learning algorithms (individual and ensemble techniques), including bagging and adaptive boosting by including weak learners. For predicting the mechanical properties, 80 cylinders for compressive strength and 80 cylinders for split tensile strength were casted and tested with varying percentages of irradiated plastic waste, either as of cement or fine aggregate replacement. In addition, a thorough and reliable database, including 320 compressive strength tests and 320 split tensile strength tests, was generated from existing literature. Individual, bagging and adaptive boosting models of decision tree, multilayer perceptron neural network, and support vector machines were developed and compared with modified learner model of random forest. The results implied that individual model response was enriched by utilizing bagging and boosting learners. A random forest with a modified learner algorithm provided the robust performance of the models with coefficient correlation of 0.932 for compressive strength and 0.86 for split tensile strength with the least errors. Sensitivity analyses showed that tensile strength models were least sensitive to water and coarse aggregates, while cement, silica fume, coarse aggregate, and age have a substantial effect on compressive strength models. To minimize overfitting errors and corroborate the generalized modelling result, a cross-validation K-Fold technique was used. Machine learning algorithms are used to predict mechanical properties of plastic concrete to promote sustainability in construction industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美芹发布了新的文献求助10
刚刚
珊珊4532完成签到 ,获得积分10
刚刚
奈何桥上抬花轿完成签到,获得积分20
刚刚
胡占东发布了新的文献求助10
刚刚
汉堡包应助LLL采纳,获得10
1秒前
cc完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
2秒前
网上飞完成签到,获得积分10
2秒前
2秒前
3秒前
星辰大海应助17采纳,获得10
3秒前
畅快芝麻发布了新的文献求助10
3秒前
哈哈发布了新的文献求助10
3秒前
斗牛的番茄完成签到 ,获得积分10
3秒前
科研通AI5应助周周采纳,获得10
3秒前
冷静的静蕾完成签到,获得积分10
4秒前
4秒前
yc发布了新的文献求助10
4秒前
4秒前
4秒前
Rose_Yang发布了新的文献求助10
5秒前
5秒前
5秒前
木子(Tao Li)完成签到,获得积分10
5秒前
wangs完成签到,获得积分10
6秒前
阿斯顿风格完成签到,获得积分10
6秒前
充电宝应助完美芹采纳,获得30
6秒前
Marita发布了新的文献求助10
7秒前
香查朵发布了新的文献求助10
8秒前
背后尔烟发布了新的文献求助10
8秒前
sdl发布了新的文献求助10
8秒前
烟花应助负责的方盒采纳,获得10
9秒前
单薄茗发布了新的文献求助30
9秒前
10秒前
10秒前
yizhouchang应助胡占东采纳,获得10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796339
求助须知:如何正确求助?哪些是违规求助? 3341373
关于积分的说明 10306159
捐赠科研通 3057930
什么是DOI,文献DOI怎么找? 1677992
邀请新用户注册赠送积分活动 805746
科研通“疑难数据库(出版商)”最低求助积分说明 762775