Effects of learning and uncertainty on crowdsourcing performance of solvers: insights from performance feedback theory

众包 体验式学习 独创性 任务(项目管理) 知识管理 竞赛 观察学习 计算机科学 竞赛(生物学) 解算器 认知心理学 心理学 社会心理学 数学教育 创造力 工程类 万维网 生物 程序设计语言 法学 系统工程 生态学 政治学
作者
Hua Ye
出处
期刊:Internet Research [Emerald (MCB UP)]
卷期号:32 (5): 1595-1616 被引量:9
标识
DOI:10.1108/intr-07-2021-0432
摘要

Purpose In crowdsourcing contests, the capabilities and performance of individual workers (solvers) determine whether seeker firms can obtain satisfactory solutions from the platform. It is noted that solvers may learn such skills in crowdsourcing from doing (experiential learning) or observing (vicarious learning). However, it remains unclear if such learning can be materialized into improved performance considering the unique settings of crowdsourcing contests. The study aims to understand how experiential learning and vicarious learning enhance solver performance and under what conditions. Design/methodology/approach The model was tested using survey and archival data from 261 solvers on a large contest platform in China. Findings Results support the premise that experiential learning and vicarious learning separately and jointly enhance solver performance. Moreover, perceived task uncertainty strengthens the effect of vicarious learning but weakens the effect of experiential learning, whereas perceived competition uncertainty weakens the effect of vicarious learning. Originality/value The current study enriches the understanding of the impacts of experiential learning and vicarious learning and offers a more nuanced understanding of the conditions under which solvers can reap the performance benefits from learning in crowdsourcing contests. The study also provides practical insights into enhancing solver performance under perceived task uncertainty and perceived competition uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Meteor636完成签到 ,获得积分10
1秒前
1秒前
鹤立鸡群1964完成签到,获得积分10
2秒前
Derik发布了新的文献求助10
3秒前
lianmeiliu完成签到,获得积分10
4秒前
shuxue完成签到,获得积分10
4秒前
4秒前
充电宝应助灰色白面鸮采纳,获得10
5秒前
华仔应助灰色白面鸮采纳,获得10
5秒前
李健应助灰色白面鸮采纳,获得10
5秒前
NexusExplorer应助灰色白面鸮采纳,获得10
5秒前
怡然小蚂蚁完成签到 ,获得积分10
5秒前
慕青应助灰色白面鸮采纳,获得10
5秒前
李爱国应助灰色白面鸮采纳,获得10
5秒前
搜集达人应助灰色白面鸮采纳,获得10
5秒前
传奇3应助灰色白面鸮采纳,获得10
5秒前
酷波er应助灰色白面鸮采纳,获得10
5秒前
小蘑菇应助灰色白面鸮采纳,获得10
5秒前
5秒前
充电宝应助Seamewww采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
SCIER发布了新的文献求助30
8秒前
9秒前
swing完成签到,获得积分10
9秒前
阿斗完成签到,获得积分20
9秒前
FashionBoy应助CMUSK采纳,获得10
10秒前
我是老大应助灰色白面鸮采纳,获得10
11秒前
小马甲应助灰色白面鸮采纳,获得10
11秒前
李爱国应助灰色白面鸮采纳,获得10
11秒前
星辰大海应助灰色白面鸮采纳,获得10
11秒前
充电宝应助灰色白面鸮采纳,获得10
11秒前
在水一方应助灰色白面鸮采纳,获得10
11秒前
华仔应助灰色白面鸮采纳,获得10
11秒前
大模型应助灰色白面鸮采纳,获得10
11秒前
11秒前
烟花应助灰色白面鸮采纳,获得10
11秒前
Seamewww完成签到,获得积分10
11秒前
跳跃的凌文完成签到 ,获得积分10
12秒前
ZSJ完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708665
求助须知:如何正确求助?哪些是违规求助? 5189265
关于积分的说明 15254544
捐赠科研通 4861584
什么是DOI,文献DOI怎么找? 2609540
邀请新用户注册赠送积分活动 1560064
关于科研通互助平台的介绍 1517810