Development and parameterization of a control-oriented electrochemical model of lithium-ion batteries for battery-management-systems applications

电池(电) 计算 等效电路 电压 测功机 控制理论(社会学) 计算机科学 MATLAB语言 电化学电池 生物系统
作者
Yizhao Gao,Chenghao Liu,Shun Chen,Xi Zhang,Guodong Fan,Chunbo Zhu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:309: 118521-118521
标识
DOI:10.1016/j.apenergy.2022.118521
摘要

• A reduced-order electrochemical model is proposed. • Identify an accurate model with cell teardown and parameter estimation. • The cell terminal voltage and internal electrochemical states are validated. • The computation efficiency of the electrochemical model on hardware is analyzed. A precise electrochemical battery model is critical for advanced battery management systems to improve the safety and efficiency of electric vehicles. This paper presents a novel methodology to develop and parameterize the electrochemical model through cell teardown and current/voltage data estimation. The partial differential equations of ionic electrolyte and potential dynamics in the solid and liquid phases are solved and reduced to a low-order system with Padé approximation. The systematic identification procedure is proposed by first dividing the parameters into fixed geometric properties, thermodynamics, and kinetics. Then the cells are dismantled. Subsequent chemical and thermodynamic analyses, including half-cell tests, are conducted for parameter extraction. Next, the parameterized model is validated with extensive experimental data, illustrating the superior capability of predicting cell voltage with root-mean-square errors of 8.90 mV at 2C and 13.98 mV for Urban Dynamometer Driving Schedule profile at 0 °C. The accuracy of the cell internal electrochemical states of the reduced model is verified as well. Comparative studies concerning model accuracy and computation efficiency on hardware reveal that the model is 31% more accurate than equivalent circuit models but occupies similar computation resources. Finally, the need and advantages of combining cell teardown and parameter estimation in achieving a precise electrochemical model are addressed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊大完成签到 ,获得积分10
刚刚
烟花应助大意的紫菱采纳,获得10
2秒前
2秒前
5秒前
6秒前
ray发布了新的文献求助10
8秒前
科研不通完成签到,获得积分10
8秒前
8秒前
不要慌完成签到 ,获得积分10
8秒前
9秒前
缓慢含烟发布了新的文献求助10
10秒前
11秒前
岁岁完成签到 ,获得积分10
12秒前
大意的紫菱完成签到,获得积分20
13秒前
xuxu完成签到,获得积分20
15秒前
echo发布了新的文献求助10
15秒前
16秒前
君君发布了新的文献求助10
16秒前
pluto应助山水之乐采纳,获得10
16秒前
感动的芷卉完成签到,获得积分10
17秒前
17秒前
卓天宇完成签到,获得积分10
18秒前
严冥幽完成签到 ,获得积分10
19秒前
20秒前
21秒前
遇见完成签到,获得积分10
23秒前
24秒前
2425完成签到,获得积分10
24秒前
忐忑的天真完成签到 ,获得积分10
25秒前
27秒前
linkman发布了新的文献求助10
27秒前
Tina完成签到,获得积分10
28秒前
张洁发布了新的文献求助30
28秒前
28秒前
29秒前
燧人氏发布了新的文献求助10
30秒前
30秒前
善学以致用应助cxl666采纳,获得10
31秒前
英俊的铭应助辣椒离我远点采纳,获得150
31秒前
7890733发布了新的文献求助10
33秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4165855
求助须知:如何正确求助?哪些是违规求助? 3701529
关于积分的说明 11685963
捐赠科研通 3390132
什么是DOI,文献DOI怎么找? 1859244
邀请新用户注册赠送积分活动 919597
科研通“疑难数据库(出版商)”最低求助积分说明 832229