Fundamental limits of caching

利用 计算机科学 隐藏物 虚假分享 方案(数学) 智能缓存 骨料(复合) 以信息为中心的网络 缓存算法 分布式计算 计算机网络 CPU缓存 计算机安全 数学 数学分析 复合材料 材料科学
作者
Mohammad Ali Maddah-Ali,Urs Niesen
出处
期刊:International Symposium on Information Theory 被引量:79
标识
DOI:10.1109/isit.2013.6620392
摘要

Caching is a technique to reduce peak traffic rates by prefetching popular content in memories at the end users. This paper proposes a novel caching approach that can achieve a significantly larger reduction in peak rate compared to previously known caching schemes. In particular, the improvement can be on the order of the number of end users in the network. Conventionally, cache memories are exploited by delivering requested contents in part locally rather than through the network. The gain offered by this approach, which we term local caching gain, depends on the local cache size (i.e., the cache available at each individual user). In this paper, we introduce and exploit a second, global, caching gain, which is not utilized by conventional caching schemes. This gain depends on the aggregate global cache size (i.e., the cumulative cache available at all users), even though there is no cooperation among the caches. To evaluate and isolate these two gains, we introduce a new, information-theoretic formulation of the caching problem focusing on its basic structure. For this setting, the proposed scheme exploits both local and global caching gains, leading to a multiplicative improvement in the peak rate compared to previously known schemes. Moreover, we argue that the performance of the proposed scheme is within a constant factor from the information-theoretic optimum for all values of the problem parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
pyt发布了新的文献求助10
2秒前
田様应助十一采纳,获得10
3秒前
吴彦祖完成签到,获得积分10
3秒前
LLL完成签到 ,获得积分10
3秒前
销户完成签到 ,获得积分10
4秒前
4秒前
felix发布了新的文献求助10
5秒前
温暖的碧蓉完成签到 ,获得积分10
5秒前
王萍完成签到 ,获得积分10
5秒前
烟花应助SUS采纳,获得10
6秒前
hoshi1018完成签到,获得积分10
6秒前
6秒前
6秒前
青花菜鱼得啦完成签到 ,获得积分10
6秒前
情怀应助枳甜采纳,获得10
7秒前
zzzzzzzp完成签到,获得积分10
7秒前
8秒前
8秒前
如意的纸飞机完成签到,获得积分10
8秒前
苗笑卉完成签到,获得积分20
8秒前
9秒前
10秒前
pyt完成签到,获得积分20
10秒前
10秒前
SYLH应助孔大漂亮采纳,获得20
10秒前
彭于彦祖应助孔大漂亮采纳,获得20
10秒前
Hedy应助孔大漂亮采纳,获得20
10秒前
10秒前
搜集达人应助孔大漂亮采纳,获得10
10秒前
weeson完成签到,获得积分10
11秒前
12秒前
12秒前
星野爱发布了新的文献求助10
13秒前
火柴人发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
平常的毛豆应助hao采纳,获得10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786121
求助须知:如何正确求助?哪些是违规求助? 3331636
关于积分的说明 10251966
捐赠科研通 3047060
什么是DOI,文献DOI怎么找? 1672358
邀请新用户注册赠送积分活动 801243
科研通“疑难数据库(出版商)”最低求助积分说明 760074