The utility of PSMA and PSA immunohistochemistry in the cytologic diagnosis of metastatic prostate carcinoma

前列腺癌 活检 转移癌 腺癌 神经内分泌分化
作者
Kurt D. Bernacki,L B S Kristina Fields,Michael H. Roh
出处
期刊:Diagnostic Cytopathology [Wiley]
卷期号:42 (7): 570-575 被引量:20
标识
DOI:10.1002/dc.23075
摘要

The diagnosis of metastatic prostate carcinoma frequently requires the use of immunohistochemical adjuncts. Immunohistochemistry for prostate-specific antigen (PSA) is commonly used for this purpose but can be of limited utility. Recently, prostate-specific membrane antigen (PSMA) has been shown to be a promising marker for the identification of metastatic prostate carcinoma in surgical specimens. The utility of this marker has yet to be reported for cytology specimens. We sought to compare the sensitivities of PSMA and PSA immunohistochemistry and investigate the specificity of PSMA by utilizing cell block preparations from cytologic cases of metastatic prostate carcinoma (n = 19) and carcinomas of nonprostatic origin (n = 33). The sensitivity of PSMA immunohistochemistry was higher (16/19; 84%) in detecting metastatic prostate carcinomas than that of PSA immunohistochemistry (11/19; 58%). Strong, diffuse staining for PSMA was seen in 13 (81%) of 16 PSMA-positive cases whereas strong, diffuse staining for PSA was observed in six (55%) of 11 PSA-positive cases. Positivity for either PSMA or PSA was seen in 17 of 19 cases of metastatic prostate carcinoma for a combined sensitivity of 89%. PSMA immunohistochemistry was completely negative in 32 of 33 cytology cases of nonprostatic carcinomas. Therefore, the specificity of this marker was 97% in this study. In conclusion, our results indicate that PSMA is a highly sensitive and specific immunomarker for the detection of metastatic prostate carcinoma in cytology specimens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fang完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
嘟嘟包发布了新的文献求助10
3秒前
书岩完成签到,获得积分10
3秒前
3秒前
小先生应助会飞的史迪奇采纳,获得20
3秒前
小大董完成签到,获得积分20
3秒前
共享精神应助宇麦达采纳,获得10
4秒前
5秒前
5秒前
6秒前
6秒前
Shawn发布了新的文献求助10
7秒前
淡然宛凝发布了新的文献求助10
7秒前
TobyGarfielD完成签到 ,获得积分10
7秒前
赵小满发布了新的文献求助10
8秒前
小孙孙发布了新的文献求助20
8秒前
ljscjth发布了新的文献求助10
9秒前
虚拟初之发布了新的文献求助10
9秒前
shenhang23发布了新的文献求助10
10秒前
hope完成签到,获得积分10
10秒前
科研通AI5应助sss采纳,获得10
10秒前
科研通AI5应助XXX采纳,获得10
10秒前
10秒前
科研通AI5应助依依啵啵啵采纳,获得10
10秒前
11秒前
无限的寄真发布了新的文献求助200
11秒前
11秒前
路路通发布了新的文献求助10
12秒前
12秒前
12秒前
嘟嘟包完成签到 ,获得积分10
13秒前
13秒前
刘钱美子完成签到,获得积分10
14秒前
烤肠发布了新的文献求助10
15秒前
15秒前
梵高线上完成签到,获得积分10
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835233
求助须知:如何正确求助?哪些是违规求助? 3377688
关于积分的说明 10499920
捐赠科研通 3097264
什么是DOI,文献DOI怎么找? 1705630
邀请新用户注册赠送积分活动 820643
科研通“疑难数据库(出版商)”最低求助积分说明 772164