PSXI-2 A computer vision system for feed bunk management in beef cattle feedlot

饲养场 人工智能 计算机科学 RGB颜色模型 动物科学 生物
作者
J.R.R. Dórea,S. K. Cheong
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:97 (Supplement_3): 389-390 被引量:2
标识
DOI:10.1093/jas/skz258.776
摘要

Abstract Feed bunk scoring is a common management practice in feedlots. Usually, the bunk score is assigned visually by a trained person. However, the subjectivity of bunk scoring and inconsistency across bunk readers can result in excessive variation on feed delivery. Such variation can result on feed waste, sub-optimal animal performance, and increased incidence of metabolic disorders. The objective of this study was to develop an artificial intelligence system to perform bunk management in real-time. RGB-cameras were installed above the feed bunk in a commercial feedlot, and a total of 4,280 images were acquired, together with visual bunk scores with four categories: empty (no feed remaining), low (scattered feed remaining), medium (30–50% of feed remaining), and full (> 50% of feed remaining). Cattle behavior at the feed bunk was also classified into four classes: empty (no cattle at the feed bunk); low (< 30% bunk occupied); medium (30–70% feed bunk occupied); full (above 70% feed bunk occupied). The labeled images were then used for model training and a new set of 105 images were used for validation. A deep neural network (DNN) called ResNet was implemented to generate the predictions using a transfer learning with weights from the ImageNet dataset. A cloud computing system was developed to acquire, process and store images every 15 minutes, and implement real-time predictions of bunk score and cattle behavior. Prediction accuracies across bank score categories were: 81.8% (empty), 82.4% (low), 88.8% (medium), and 90% (full). For cattle behavior, accuracies were: 83.7% (empty), 66.6% (low), 71.4% (medium), and 86.6% (full). Combining feed bunk score and cattle behavior can provide an important decision-making tool to improve nutritional management in beef cattle feedlot. The use of artificial intelligence can allow the development of fully automated real-time systems to enhance livestock operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精壮小伙发布了新的文献求助10
刚刚
王醉山完成签到,获得积分10
刚刚
1秒前
领导范儿应助ying采纳,获得10
1秒前
1秒前
kaiyi完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
4秒前
Zyq1231完成签到,获得积分10
4秒前
12345发布了新的文献求助10
4秒前
无语发布了新的文献求助30
4秒前
TT发布了新的文献求助10
4秒前
5秒前
尤瑟夫发布了新的文献求助30
5秒前
流北爷发布了新的文献求助10
5秒前
zz完成签到,获得积分10
5秒前
鸡腿大王发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
大个应助coffee采纳,获得10
6秒前
我的文献呢应助ElectricSheep采纳,获得30
6秒前
ding完成签到,获得积分10
6秒前
6秒前
墨痕发布了新的文献求助10
7秒前
7秒前
7秒前
无花果应助科科采纳,获得10
7秒前
小刘今天看文献了吗完成签到,获得积分10
7秒前
shengxindashi完成签到,获得积分20
7秒前
111完成签到,获得积分10
8秒前
8秒前
搜集达人应助儒雅大象采纳,获得10
8秒前
zyc发布了新的文献求助10
8秒前
8秒前
8秒前
酷波er应助vyahan采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097673
求助须知:如何正确求助?哪些是违规求助? 4310117
关于积分的说明 13429226
捐赠科研通 4137515
什么是DOI,文献DOI怎么找? 2266700
邀请新用户注册赠送积分活动 1269881
关于科研通互助平台的介绍 1206170