Use of radiomics to extract splenic features to predict prognosis of patients with gastric cancer

医学 无线电技术 癌症 内科学 放射科 肿瘤科
作者
Xiang Wang,Jing Sun,Weiteng Zhang,Xinxin Yang,Ce Zhu,Bujian Pan,Yunpeng Zeng,Jingxuan Xu,Xiaohong Chen,Xian Shen
出处
期刊:Ejso [Elsevier BV]
卷期号:46 (10): 1932-1940 被引量:18
标识
DOI:10.1016/j.ejso.2020.06.021
摘要

Radiomics allows for mining of imaging data to examine tissue characteristics non-invasively, which can be used to predict the prognosis of a patient. This study explored the use of imaging techniques to evaluate splenic tissue characteristics to predict the prognosis of patients with gastric cancer.Computed tomography images from patients with gastric cancer were collected retrospectively. Splenic image characteristics, extracted with pyradiomics, of patients in the training group were randomly divided. Characteristics with a P value < 0.1 were selected for lasso regression to construct a survival risk model. Models for high-and low-risk groups were established. Patients were divided into the high- and low-risk groups for univariate and multivariate regression analysis of survival-related factors, and a visual prognostic prediction model was established.The splenic characteristic prognostic model was consistent in the training and verification groups (p < 0.001 and p = 0.016, respectively). The two groups that displayed different splenic characteristics showed no statistical difference in other basic data except the tumour-node-metastasis (pTNM) stage (p = 0.007). Univariate and multivariate analysis of survival risk factors showed that splenic characteristics (p = 0.042), age (p < 0.001), tumor location (p = 0.002), and pTNM stage (p < 0.001) were independent risk factors for survival. The prognostic prediction model combined with splenic characteristics significantly improved the accuracy of prognosis, predicting one-and three-year survival rates.Splenic features extracted from imaging technology can accurately predict the long-term survival of patients with gastric cancer. Splenic characteristic grouping can effectively improve the accuracy of survival prediction and gastric cancer prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重的烙完成签到 ,获得积分10
1秒前
善学以致用应助海绵宝宝采纳,获得10
2秒前
量子星尘发布了新的文献求助10
4秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
CAOHOU应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
7秒前
11秒前
海绵宝宝发布了新的文献求助10
11秒前
ding应助HIKUN采纳,获得10
13秒前
13秒前
小鹿乱撞完成签到,获得积分10
15秒前
ELEGENCE发布了新的文献求助10
17秒前
上官若男应助zmy采纳,获得30
18秒前
Akim应助zmy采纳,获得10
18秒前
柳贯一发布了新的文献求助10
19秒前
20秒前
21秒前
无风发布了新的文献求助10
24秒前
26秒前
文静的可仁完成签到,获得积分10
29秒前
wangang发布了新的文献求助10
31秒前
田様应助小板栗采纳,获得10
31秒前
luyunxing完成签到,获得积分10
31秒前
HSA发布了新的文献求助10
32秒前
刘杲蔚完成签到,获得积分10
33秒前
酷波er应助虚拟的山雁采纳,获得10
33秒前
量子星尘发布了新的文献求助10
34秒前
华仔应助335534ef采纳,获得10
34秒前
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4321494
求助须知:如何正确求助?哪些是违规求助? 3837923
关于积分的说明 11999254
捐赠科研通 3478338
什么是DOI,文献DOI怎么找? 1908012
邀请新用户注册赠送积分活动 953485
科研通“疑难数据库(出版商)”最低求助积分说明 854840