Taxi-hailing platforms: Inform or Assign drivers?

目的地 匹配(统计) 运筹学 排队论 共享经济 集合(抽象数据类型) 计算机科学 运输工程 工程类 万维网 地理 旅游 计算机网络 统计 数学 考古 程序设计语言
作者
Luoyi Sun,Ruud Teunter,Guowei Hua,Tian Wu
出处
期刊:Transportation Research Part B-methodological [Elsevier BV]
卷期号:142: 197-212 被引量:22
标识
DOI:10.1016/j.trb.2020.10.001
摘要

Abstract Online platforms for matching supply and demand, as part of the sharing economy, are becoming increasingly important in practice and have seen a steep increase in academic interest. Especially in the taxi/travel industry, platforms such as Uber, Lyft, and Didi Chuxing have become major players. Some of these platforms, including Didi Chuxing, operate two matching systems: Inform, where multiple drivers receive ride details and the first to respond is selected; and Assign, where the platform assigns the driver nearest to the customer. The Inform system allows drivers to select their destinations, but the Assign system minimizes driver-customer distances. This research is the first to explore: (i) how a platform should allocate customer requests to the two systems and set the maximum matching radius (i.e., customer-driver distance), with the objective to minimize the overall average waiting times for customers; and (ii) how taxi drivers select a system, depending on their varying degrees of preference for certain destinations. Using approximate queuing analysis, we derive the optimal decisions for the platform and drivers. These are applied to real-world data from Didi Chuxing, revealing the following managerial insights. The optimal radius is 1-3 kilometers, and is lower during rush hour. For most considered settings, it is optimal to allocate relatively few rides to the Inform system. Most interestingly, if destination selection becomes more important to the average driver, then the platform should not always allocate more requests to the Inform system. Although this may seem counter-intuitive, allocating too many orders to that system would result in many drivers opting for it, leading to very high waiting times in the Assign system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
rose发布了新的文献求助10
1秒前
浮生若梦完成签到,获得积分10
2秒前
2秒前
2秒前
goodgoodstudy发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
111231完成签到,获得积分10
4秒前
动听涔雨完成签到,获得积分10
4秒前
坦率的匪应助Annora采纳,获得20
4秒前
Flyzhang发布了新的文献求助10
4秒前
7秒前
科研通AI6应助西瓜采纳,获得10
8秒前
111231发布了新的文献求助10
8秒前
打卡下班应助虚幻心锁采纳,获得10
9秒前
keyan完成签到 ,获得积分10
10秒前
10秒前
coconut发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
情怀应助完美的老头采纳,获得10
12秒前
奔铂儿钯完成签到,获得积分10
13秒前
科研通AI2S应助顺心绾绾采纳,获得10
14秒前
嗯呐完成签到,获得积分10
14秒前
16秒前
我爱罗发布了新的文献求助10
16秒前
香蕉觅云应助栗子采纳,获得10
17秒前
大海完成签到 ,获得积分10
17秒前
18秒前
18秒前
杨柳发布了新的文献求助10
18秒前
19秒前
星辰大海应助李键刚采纳,获得10
19秒前
领导范儿应助Yang_728采纳,获得30
19秒前
20秒前
YH发布了新的文献求助10
21秒前
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4239435
求助须知:如何正确求助?哪些是违规求助? 3773195
关于积分的说明 11849854
捐赠科研通 3428981
什么是DOI,文献DOI怎么找? 1881887
邀请新用户注册赠送积分活动 933971
科研通“疑难数据库(出版商)”最低求助积分说明 840639