亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhanced 3DTV Regularization and Its Applications on HSI Denoising and Compressed Sensing

计算机科学 高光谱成像 子空间拓扑 人工智能 全变差去噪 期限(时间) 降噪 正规化(语言学) 计算机视觉 模式识别(心理学) 算法 量子力学 物理
作者
Jiangjun Peng,Qi Xie,Qian Zhao,Yao Wang,Yee Leung,Deyu Meng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 7889-7903 被引量:124
标识
DOI:10.1109/tip.2020.3007840
摘要

The total variation (TV) is a powerful regularization term encoding the local smoothness prior structure underlying images. By combining the TV regularization term with low rank prior, the 3D total variation (3DTV) regularizer has achieved advanced performance in general hyperspectral image (HSI) processing tasks. Intrinsically, 3DTV assumes i.i.d. sparsity structures on all bands of the gradient maps calculated along the spectrum and space of an HSI. This, however, largely deviates from the real-world cases, where the gradient maps generally have different while correlated gradient map structures across all bands. To alleviate this issue, we propose an enhanced 3DTV (E-3DTV) regularization term beyond the conventional. Instead of imposing sparsity on gradient maps themselves, the new term calculates sparsity on the subspace bases on gradient maps along all bands of an HSI, which naturally encodes the correlation and difference among all these bands, and thus more faithfully reflects the insightful configurations of an HSI. The E-3DTV term can easily replace the conventional 3DTV term and be embedded into an HSI processing model to ameliorate its performance. We made such attempts on two typical related tasks: HSI denoising and compressed sensing. The superiority of our proposed method is substantiated by extensive experiments on synthetic and real HSI data, visually and quantitatively on both tasks, as compared with current state-of-the-arts. The code of our algorithm is released at https://github.com/andrew-pengjj/Enhanced-3DTV.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
zoey发布了新的文献求助10
10秒前
搜集达人应助zoey采纳,获得10
16秒前
Li应助科研通管家采纳,获得10
28秒前
jyy应助科研通管家采纳,获得10
28秒前
h0jian09完成签到,获得积分10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
不胜玖完成签到 ,获得积分10
2分钟前
清秀灵薇完成签到,获得积分10
3分钟前
一只榴莲发布了新的文献求助10
3分钟前
3分钟前
搜集达人应助一只榴莲采纳,获得10
3分钟前
3分钟前
zzzjh发布了新的文献求助10
3分钟前
11发布了新的文献求助10
3分钟前
11完成签到,获得积分10
3分钟前
kkk完成签到 ,获得积分10
3分钟前
辛勤夜柳发布了新的文献求助30
4分钟前
英姑应助苏打采纳,获得10
4分钟前
4分钟前
ljz发布了新的文献求助10
4分钟前
Li应助科研通管家采纳,获得10
4分钟前
bc应助科研通管家采纳,获得30
4分钟前
Li应助科研通管家采纳,获得10
4分钟前
4分钟前
绝尘发布了新的文献求助10
4分钟前
4分钟前
欣欣发布了新的文献求助10
4分钟前
4分钟前
一只榴莲发布了新的文献求助10
5分钟前
NexusExplorer应助一只榴莲采纳,获得10
5分钟前
璇别关注了科研通微信公众号
5分钟前
星星完成签到,获得积分20
5分钟前
5分钟前
璇别发布了新的文献求助10
5分钟前
科研通AI2S应助Jeongin采纳,获得10
6分钟前
ljz完成签到,获得积分20
6分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346432
关于积分的说明 10329326
捐赠科研通 3062993
什么是DOI,文献DOI怎么找? 1681307
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714