Predicting Persistent Opioid Use, Abuse, and Toxicity Among Cancer Survivors

类阿片 毒性 医学 癌症 肿瘤科 精神科 内科学 受体
作者
Lucas K. Vitzthum,Paul Riviere,Paige Sheridan,Vinit Nalawade,Rishi Deka,Timothy Furnish,Loren K. Mell,Brent S. Rose,Mark S. Wallace,James D. Murphy
出处
期刊:Journal of the National Cancer Institute [Oxford University Press]
卷期号:112 (7): 720-727 被引量:55
标识
DOI:10.1093/jnci/djz200
摘要

Abstract Background Although opioids play a critical role in the management of cancer pain, the ongoing opioid epidemic has raised concerns regarding their persistent use and abuse. We lack data-driven tools in oncology to understand the risk of adverse opioid-related outcomes. This project seeks to identify clinical risk factors and create a risk score to help identify patients at risk of persistent opioid use and abuse. Methods Within a cohort of 106 732 military veteran cancer survivors diagnosed between 2000 and 2015, we determined rates of persistent posttreatment opioid use, diagnoses of opioid abuse or dependence, and admissions for opioid toxicity. A multivariable logistic regression model was used to identify patient, cancer, and treatment risk factors associated with adverse opioid-related outcomes. Predictive risk models were developed and validated using a least absolute shrinkage and selection operator regression technique. Results The rate of persistent opioid use in cancer survivors was 8.3% (95% CI = 8.1% to 8.4%); the rate of opioid abuse or dependence was 2.9% (95% CI = 2.8% to 3.0%); and the rate of opioid-related admissions was 2.1% (95% CI = 2.0% to 2.2%). On multivariable analysis, several patient, demographic, and cancer and treatment factors were associated with risk of persistent opioid use. Predictive models showed a high level of discrimination when identifying individuals at risk of adverse opioid-related outcomes including persistent opioid use (area under the curve [AUC] = 0.85), future diagnoses of opioid abuse or dependence (AUC = 0.87), and admission for opioid abuse or toxicity (AUC = 0.78). Conclusion This study demonstrates the potential to predict adverse opioid-related outcomes among cancer survivors. With further validation, personalized risk-stratification approaches could guide management when prescribing opioids in cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哈哈客完成签到,获得积分10
2秒前
fafafa发布了新的文献求助10
4秒前
znlion发布了新的文献求助10
4秒前
NexusExplorer应助Arturo采纳,获得30
4秒前
所所应助嗷嗷嗷采纳,获得10
9秒前
9秒前
9秒前
紫色的云完成签到,获得积分10
9秒前
xiao完成签到,获得积分10
10秒前
兰彻完成签到,获得积分10
10秒前
Wust发布了新的文献求助10
13秒前
FashionBoy应助细腻的三问采纳,获得10
14秒前
余鑫发布了新的文献求助10
14秒前
15秒前
walongjushi完成签到 ,获得积分10
15秒前
enn完成签到 ,获得积分10
15秒前
渴望者发布了新的文献求助10
16秒前
在水一方应助小菜鸟采纳,获得10
16秒前
17秒前
默默的棒棒糖完成签到 ,获得积分10
19秒前
zhangjing发布了新的文献求助20
19秒前
Cici发布了新的文献求助10
20秒前
小小发布了新的文献求助80
20秒前
小栗子关注了科研通微信公众号
21秒前
老黑完成签到 ,获得积分10
22秒前
znlion完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
23秒前
英姑应助aaa采纳,获得10
24秒前
小易发布了新的文献求助10
25秒前
曾经以筠完成签到 ,获得积分20
25秒前
liw完成签到 ,获得积分10
26秒前
LLL发布了新的文献求助10
26秒前
小静完成签到,获得积分10
27秒前
大模型应助韩豆乐采纳,获得10
27秒前
孤独小蜜蜂完成签到,获得积分20
27秒前
苏幕遮发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602782
求助须知:如何正确求助?哪些是违规求助? 4687876
关于积分的说明 14851686
捐赠科研通 4685453
什么是DOI,文献DOI怎么找? 2540122
邀请新用户注册赠送积分活动 1506835
关于科研通互助平台的介绍 1471450