加氢脱硫
镍
钼
硫化物
材料科学
硫化镍
曲率
化学工程
纳米技术
硫黄
冶金
工程类
数学
几何学
作者
Xin Kang,Jiancong Liu,Chungui Tian,Dongxu Wang,Yaorui Li,Hongyan Zhang,Xusheng Cheng,Aiping Wu,Honggang Fu
出处
期刊:Nano Research
[Springer Nature]
日期:2020-03-01
卷期号:13 (3): 882-890
被引量:29
标识
DOI:10.1007/s12274-020-2716-x
摘要
Size-controlled synthesis of two-dimensional (2D) catalysts with low stacking numbers and small nanoflake lengths is crucial for promoting the catalytic performance in diverse heterogeneous catalysis. Herein, we report a facile and general “surface curvature-confined synthesis” strategy to modulate the slab lengths and stacking numbers of 2D transition metal sulfides by controlling the strain induced by different surface curvature of supports. An efficient NiMo sulfide with shorter slab length (average 3.71 nm), less stacking number (1–2 layers) and more edge active sites is synthesized onto ZSM-5 zeolites with the average size of 100 nm, which shows superior kHDS value of dibenzothiophene (14.05 × 10−7 mol/(g·s)), enhanced stability up to 80 h, and high direct desulfurization selectivity (> 95%). This design concept is also proved to be generally applicable to modulate the slab lengths and stacking numbers of other 2D catalysts such as MoS2 and WS2 nanoflakes, which shows great potentials for developing more ultrasmall 2D catalysts with controlled sizes and excellent catalytic activities.
科研通智能强力驱动
Strongly Powered by AbleSci AI