R$^{2}$s for Correlated Data: Phylogenetic Models, LMMs, and GLMMs

生物 系统发育树 统计 统计物理学 计量经济学 进化生物学 数学 物理 遗传学 基因
作者
Anthony R. Ives
出处
期刊:Systematic Biology [Oxford University Press]
卷期号:68 (2): 234-251 被引量:212
标识
DOI:10.1093/sysbio/syy060
摘要

Many researchers want to report an |$R^{2}$| to measure the variance explained by a model. When the model includes correlation among data, such as phylogenetic models and mixed models, defining an |$R^{2}$| faces two conceptual problems. (i) It is unclear how to measure the variance explained by predictor (independent) variables when the model contains covariances. (ii) Researchers may want the |$R^{2}$| to include the variance explained by the covariances by asking questions such as "How much of the data is explained by phylogeny?" Here, I investigated three |$R^{2}$|s for phylogenetic and mixed models. |$R^{2}_{resid}$| is an extension of the ordinary least-squares |$R^{2}$| that weights residuals by variances and covariances estimated by the model; it is closely related to |$R^{2}_{glmm}$| presented by Nakagawa and Schielzeth (2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4:133–142). |$R^{2}_{pred}$| is based on predicting each residual from the fitted model and computing the variance between observed and predicted values. |$R^{2}_{lik}$| is based on the likelihood of fitted models, and therefore, reflects the amount of information that the models contain. These three |$R^{2}$|s are formulated as partial |$R^{2}$|s, making it possible to compare the contributions of predictor variables and variance components (phylogenetic signal and random effects) to the fit of models. Because partial |$R^{2}$|s compare a full model with a reduced model without components of the full model, they are distinct from marginal |$R^{2}$|s that partition additive components of the variance. I assessed the properties of the |$R^{2}$|s for phylogenetic models using simulations for continuous and binary response data (phylogenetic generalized least squares and phylogenetic logistic regression). Because the |$R^{2}$|s are designed broadly for any model for correlated data, I also compared |$R^{2}$|s for linear mixed models and generalized linear mixed models. |$R^{2}_{resid}$|⁠, |$R^{2}_{pred}$|⁠, and |$R^{2}_{lik}$| all have similar performance in describing the variance explained by different components of models. However, |$R^{2}_{pred}$| gives the most direct answer to the question of how much variance in the data is explained by a model. |$R^{2}_{resid}$| is most appropriate for comparing models fit to different data sets, because it does not depend on sample sizes. And |$R^{2}_{lik}$| is most appropriate to assess the importance of different components within the same model applied to the same data, because it is most closely associated with statistical significance tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陌上灬完成签到,获得积分10
刚刚
舒适小馒头完成签到,获得积分10
1秒前
今后应助鸣蜩十三采纳,获得10
2秒前
同城代打发布了新的文献求助10
2秒前
2秒前
2秒前
YAO完成签到 ,获得积分10
2秒前
CipherSage应助伶俐的如松采纳,获得10
3秒前
丁心莲完成签到,获得积分10
3秒前
青山完成签到,获得积分10
4秒前
JYZ发布了新的文献求助10
4秒前
天天快乐应助Karry采纳,获得10
5秒前
泽林完成签到,获得积分10
5秒前
星辰大海应助gao采纳,获得10
5秒前
5秒前
善学以致用应助sx采纳,获得10
5秒前
6秒前
李咸咸123发布了新的文献求助20
6秒前
jiangshui发布了新的文献求助10
6秒前
柠檬完成签到,获得积分10
7秒前
一白完成签到 ,获得积分10
7秒前
甜甜玫瑰发布了新的文献求助10
7秒前
嗯呐发布了新的文献求助10
7秒前
7秒前
山水发布了新的文献求助10
7秒前
Csm完成签到,获得积分10
8秒前
8秒前
Tushar完成签到,获得积分10
8秒前
汐羽烨完成签到,获得积分10
9秒前
小聖完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助Yunxi Zhou采纳,获得10
9秒前
10秒前
10秒前
小虎发布了新的文献求助10
11秒前
虎虎生威发布了新的文献求助10
11秒前
cunzhang发布了新的文献求助10
11秒前
11秒前
情怀应助瘦瘦的荧采纳,获得10
11秒前
whatever举报求助违规成功
11秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4239435
求助须知:如何正确求助?哪些是违规求助? 3773195
关于积分的说明 11849854
捐赠科研通 3428981
什么是DOI,文献DOI怎么找? 1881887
邀请新用户注册赠送积分活动 933971
科研通“疑难数据库(出版商)”最低求助积分说明 840639