The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs

电池(电) 电解质 电池组 材料科学 等温过程 热的 工作(物理) 降级(电信) 短路 锂离子电池 锂(药物) 机械 核工程 离子 电极 电气工程 化学 热力学 物理 电压 工程类 医学 功率(物理) 有机化学 物理化学 内分泌学
作者
Xinhua Liu,Weilong Ai,Max Naylor Marlow,Yatish Patel,Billy Wu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:248: 489-499 被引量:191
标识
DOI:10.1016/j.apenergy.2019.04.108
摘要

Abstract The performance of lithium-ion battery packs are often extrapolated from single cell performance however uneven currents in parallel strings due to cell-to-cell variations, thermal gradients and/or cell interconnects can reduce the overall performance of a large scale lithium-ion battery pack. In this work, we investigate the performance implications caused by these factors by simulating six parallel connected batteries based on a thermally coupled single particle model with the solid electrolyte interphase growth degradation mechanism modelled. Experimentally validated simulations show that cells closest to the load points of a pack experience higher currents than cells further away due to uneven overpotentials caused by the interconnects. When a cell with a four times greater internal impedance was placed in the location with the higher currents this actually helped to equalise the cell-to-cell current distribution, however if this was placed at a location furthest from the load point this would cause a ∼6% reduction in accessible energy at 1.5 C. The influence of thermal gradients can further affect this current heterogeneity leading to accelerated aging. Simulations show that in all cases, cells degrade at different rates in a pack due to the uneven currents, with this being amplified by thermal gradients. In the presented work a 5.2% increase in degradation rate, from −7.71 mWh/cycle (isothermal) to −8.11 mWh/cycle (non-isothermal) can be observed. Therefore, the insights from this paper highlight the highly coupled nature of battery pack performance and can inform designs for higher performance and longer lasting battery packs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心的冰棍完成签到,获得积分10
刚刚
zjh发布了新的文献求助10
刚刚
Benjamin完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
WILAY889完成签到,获得积分10
1秒前
2秒前
打打应助叶艳采纳,获得10
3秒前
3秒前
欢呼的未来完成签到 ,获得积分10
3秒前
3秒前
DA发布了新的文献求助10
4秒前
4秒前
4秒前
舒心的耷完成签到,获得积分10
4秒前
科研顺利发布了新的文献求助10
5秒前
一蓑烟雨任平生应助黑猫采纳,获得10
6秒前
6秒前
changping应助xz采纳,获得10
6秒前
momo完成签到,获得积分10
6秒前
大模型应助龍龖龘采纳,获得10
6秒前
地瓜儿发布了新的文献求助30
7秒前
局外人发布了新的社区帖子
7秒前
xiaoxu完成签到,获得积分20
7秒前
Hunter1023完成签到,获得积分10
7秒前
科研通AI6应助pppy采纳,获得10
8秒前
8秒前
跳跃的滑板完成签到,获得积分10
8秒前
充电宝应助冷酷雪碧采纳,获得30
8秒前
量子星尘发布了新的文献求助10
9秒前
科研通AI5应助温柔的白秋采纳,获得10
10秒前
绿色催化发布了新的文献求助10
10秒前
李暴龙完成签到,获得积分10
10秒前
卡皮巴拉发布了新的文献求助10
11秒前
11秒前
11秒前
YC发布了新的文献求助10
11秒前
烟花应助熊涛采纳,获得10
12秒前
顺利毕业耶耶耶完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070552
求助须知:如何正确求助?哪些是违规求助? 4291675
关于积分的说明 13371209
捐赠科研通 4111892
什么是DOI,文献DOI怎么找? 2251771
邀请新用户注册赠送积分活动 1256853
关于科研通互助平台的介绍 1189497