Classification of alveolar bone density using 3-D deep convolutional neural network in the cone-beam CT images: A 6-month clinical study

卷积神经网络 体素 锥束ct 人工智能 计算机科学 特征(语言学) 深度学习 医学影像学 医学诊断 模式识别(心理学) 放射科 医学 计算机断层摄影术 语言学 哲学
作者
Majid Memarian Sorkhabi,Maryam Saadat Khajeh
出处
期刊:Measurement [Elsevier BV]
卷期号:148: 106945-106945 被引量:20
标识
DOI:10.1016/j.measurement.2019.106945
摘要

Computer-based diagnoses are a crucial study in the medical image analyzing and machine learning technologies. The cone beam computed tomography (CBCT) modality provides three-dimensional bone models to extract an interactive treatment plan at relatively low radiation dose and cost. For the first time in this study, the evaluation of alveolar bone density was performed by a 3-D deep convolutional neural network (CNN) at the CBCT images. The trabecular pattern of the bone was recognized and classified. This study aimed to present a methodology which was implementing 3D voxel-wise feature evaluation within a convolutional neural network. We presented a three-dimensional CNN method that evaluated the alveolar bone density from CBCT volumetric data which could efficiently capture the trabecular pattern. In clinical trials, 207 surgery target areas of 83 patients have been selected. Clinical parameters were measured and evaluated during the surgery and a 6-month follow-up. These parameters were used to database labeling and evaluate the performance of the proposed technique. Our method achieved the average precision score of 84.63% and 95.20% in the hexagonal prism and the cylindrical voxel shapes respectively. Furthermore, the alveolar bone classification was performed in 76 ms. In comparison to the state-of-art approaches, the efficiency of the suggested algorithm was proved. An automatic classification can improve the proficiency and certainty of the radiologic evaluation. The outcome of this research may help the dentists in the implant treatment from diagnosis to surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
121完成签到,获得积分10
刚刚
圆圆完成签到,获得积分10
1秒前
小丁同学应助南宫迎松采纳,获得10
2秒前
zoudegui发布了新的文献求助10
3秒前
艺涵完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
ASC发布了新的文献求助10
5秒前
5秒前
6秒前
小富婆完成签到 ,获得积分10
7秒前
8秒前
平淡南霜发布了新的文献求助10
9秒前
zoudegui完成签到,获得积分10
9秒前
曹年跃发布了新的文献求助10
9秒前
11秒前
xty发布了新的文献求助10
13秒前
guangyu发布了新的文献求助10
14秒前
14秒前
14秒前
谦让映菡发布了新的文献求助10
15秒前
15秒前
小二郎应助xty采纳,获得10
16秒前
情怀应助暖暖采纳,获得10
17秒前
曹年跃完成签到,获得积分10
18秒前
乖拉发布了新的文献求助10
18秒前
19秒前
glacier发布了新的文献求助10
21秒前
chengwanying完成签到 ,获得积分10
23秒前
28秒前
CipherSage应助玄策采纳,获得10
29秒前
29秒前
量子星尘发布了新的文献求助10
29秒前
英俊的铭应助糖糖钰采纳,获得10
30秒前
爱笑的眼睛完成签到,获得积分10
30秒前
FashionBoy应助十一采纳,获得10
32秒前
汉堡包应助小肆采纳,获得10
33秒前
33秒前
111发布了新的文献求助10
35秒前
Wxxxxx完成签到 ,获得积分10
36秒前
犹豫的完成签到,获得积分20
37秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870497
求助须知:如何正确求助?哪些是违规求助? 3412690
关于积分的说明 10680748
捐赠科研通 3137124
什么是DOI,文献DOI怎么找? 1730602
邀请新用户注册赠送积分活动 834253
科研通“疑难数据库(出版商)”最低求助积分说明 781073