IFCNN: A general image fusion framework based on convolutional neural network

计算机科学 卷积神经网络 图像融合 融合规则 人工智能 图像(数学) 光学(聚焦) 融合 基本事实 计算机视觉 一般化 模式识别(心理学) 数学 哲学 数学分析 物理 光学 语言学
作者
Yu Zhang,Yü Liu,Peng Sun,Yan Han,Xiaolin Zhao,Li Zhang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:54: 99-118 被引量:922
标识
DOI:10.1016/j.inffus.2019.07.011
摘要

In this paper, we propose a general image fusion framework based on the convolutional neural network, named as IFCNN. Inspired by the transform-domain image fusion algorithms, we firstly utilize two convolutional layers to extract the salient image features from multiple input images. Afterwards, the convolutional features of multiple input images are fused by an appropriate fusion rule (elementwise-max, elementwise-min or elementwise-mean), which is selected according to the type of input images. Finally, the fused features are reconstructed by two convolutional layers to produce the informative fusion image. The proposed model is fully convolutional, so it could be trained in the end-to-end manner without any post-processing procedures. In order to fully train the model, we have generated a large-scale multi-focus image dataset based on the large-scale RGB-D dataset (i.e., NYU-D2), which owns ground-truth fusion images and contains more diverse and larger images than the existing datasets for image fusion. Without finetuning on other types of image datasets, the experimental results show that the proposed model demonstrates better generalization ability than the existing image fusion models for fusing various types of images, such as multi-focus, infrared-visual, multi-modal medical and multi-exposure images. Moreover, the results also verify that our model has achieved comparable or even better results compared to the state-of-the-art image fusion algorithms on four types of image datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刘完成签到 ,获得积分10
刚刚
2秒前
3秒前
zk发布了新的文献求助20
3秒前
谷中青发布了新的文献求助10
3秒前
柠檬百香果完成签到,获得积分10
3秒前
徐一羊完成签到 ,获得积分10
4秒前
科研达人发布了新的文献求助10
4秒前
小兰发布了新的文献求助10
5秒前
科研通AI5应助土豆大王采纳,获得10
5秒前
6秒前
所所应助张同学要谦虚采纳,获得10
6秒前
贝壳完成签到,获得积分10
6秒前
7秒前
云浮山海完成签到,获得积分10
7秒前
细心妙菡发布了新的文献求助10
8秒前
科研通AI5应助nenoaowu采纳,获得10
8秒前
NexusExplorer应助重要幻梅采纳,获得10
10秒前
10秒前
星瑗发布了新的文献求助10
11秒前
面面发布了新的文献求助10
11秒前
11秒前
11秒前
小彭陪小崔读个研给小彭陪小崔读个研的求助进行了留言
12秒前
Ying完成签到,获得积分10
13秒前
在水一方应助liang采纳,获得10
15秒前
Orange应助嘻嘻印采纳,获得10
15秒前
16秒前
16秒前
卓立0418发布了新的文献求助10
16秒前
16秒前
空白完成签到 ,获得积分10
17秒前
空白完成签到 ,获得积分10
17秒前
17秒前
韧意完成签到,获得积分10
17秒前
17秒前
李健的小迷弟应助贝壳采纳,获得10
17秒前
科目三应助翟zhai采纳,获得10
19秒前
19秒前
lmc发布了新的文献求助10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794917
求助须知:如何正确求助?哪些是违规求助? 3339846
关于积分的说明 10297717
捐赠科研通 3056457
什么是DOI,文献DOI怎么找? 1677034
邀请新用户注册赠送积分活动 805101
科研通“疑难数据库(出版商)”最低求助积分说明 762330