光伏
钝化
材料科学
纳米晶
量子点
面(心理学)
胶体
纳米技术
光致发光
带隙
光电子学
吸收(声学)
能量转换效率
红外线的
半导体
光伏系统
光学
化学工程
物理
心理学
生态学
社会心理学
人格
图层(电子)
复合材料
五大性格特征
工程类
生物
作者
Younghoon Kim,Fanglin Che,Jea Woong Jo,Jongmin Choi,F. Pelayo Garcı́a de Arquer,Oleksandr Voznyy,Bin Sun,Junghwan Kim,Min‐Jae Choi,Rafael Quintero‐Bermudez,Fengjia Fan,Chih‐Shan Tan,Eva Bladt,Grant Walters,Andrew H. Proppe,Chengqin Zou,Haifeng Yuan,Sara Bals,Johan Hofkens,Maarten B. J. Roeffaers
标识
DOI:10.1002/adma.201805580
摘要
Colloidal nanocrystals combine size- and facet-dependent properties with solution processing. They offer thus a compelling suite of materials for technological applications. Their size- and facet-tunable features are studied in synthesis; however, to exploit their features in optoelectronic devices, it will be essential to translate control over size and facets from the colloid all the way to the film. Larger-diameter colloidal quantum dots (CQDs) offer the attractive possibility of harvesting infrared (IR) solar energy beyond absorption of silicon photovoltaics. These CQDs exhibit facets (nonpolar (100)) undisplayed in small-diameter CQDs; and the materials chemistry of smaller nanocrystals fails consequently to translate to materials for the short-wavelength IR regime. A new colloidal management strategy targeting the passivation of both (100) and (111) facets is demonstrated using distinct choices of cations and anions. The approach leads to narrow-bandgap CQDs with impressive colloidal stability and photoluminescence quantum yield. Photophysical studies confirm a reduction both in Stokes shift (≈47 meV) and Urbach tail (≈29 meV). This approach provides a ≈50% increase in the power conversion efficiency of IR photovoltaics compared to controls, and a ≈70% external quantum efficiency at their excitonic peak.
科研通智能强力驱动
Strongly Powered by AbleSci AI