坏死性下垂
PTEN公司
蛋白激酶B
PI3K/AKT/mTOR通路
信号转导
化学
肾
热休克蛋白
细胞生物学
生物
细胞凋亡
癌症研究
分子生物学
生物化学
程序性细胞死亡
内分泌学
基因
作者
Huijie Chen,Peng Li,Ziqiang Shen,Jinliang Wang,Lei Diao
标识
DOI:10.1016/j.ecoenv.2021.112387
摘要
Cadmium (Cd) is a ubiquitous environmental pollutant of increasing worldwide concern to both humans and animals. Selenium yeast (Se-Y) is an organic selenium source that has been shown an advantage in antagonizing Cd-induced liver necroptosis in chicken. Herein, we described the discovery path of Se-Y antagonism in Cd-induced renal necroptosis in chicken through targeting miR-26a-5p/PTEN/PI3K/AKT signaling pathway. We set up four groups of chickens at random: control group (0.5 mg/kg Na2SeO3), Se-Y group (0.5 mg/kg Se-Y), Se-Y+Cd group (0.5 mg/kg Se-Y and 150 mg/kg CdCl2) and Cd group (150 mg/kg CdCl2 and 0.5 mg/kg Na2SeO3). Interestingly, we found Se-Y, but not Na2SeO3, significantly blocked Cd accumulation in the kidney and alleviated Cd-induced necroptosis through inhibiting the expression of RIP1, RIP3 and MLKL. Se-Y, activated miR-26a-5p expression, thereby down-regulated the expression of PTEN, resulting in the up-regulation of PI3K/AKT signaling pathway and the inhibition of oxidative stress in both Se-Y and Cd treated chickens. Besides that, Se-Y could also specifically reduce the expression levels of heat shock protein 60 (HSP60), HSP70 and HSP90 in Se-Y and Cd co-treated chickens. Taken together, our results showed that Se-Y has an added value to antagonize Cd-induced necroptosis in chicken kidney by regulating the miR-26a-5p/PTEN/PI3K/AKT signaling pathway and HSPs, indicating that Se-Y could serve as an effective antagonist on Cd-induced renal necroptosis in chickens.
科研通智能强力驱动
Strongly Powered by AbleSci AI