区间(图论)
期限(时间)
风力发电
预测区间
功率(物理)
电力系统
控制理论(社会学)
组分(热力学)
均方预测误差
算法
区间算术
数学
计算机科学
统计
人工智能
工程类
物理
控制(管理)
量子力学
组合数学
电气工程
热力学
数学分析
有界函数
出处
期刊:Journal of physics
[IOP Publishing]
日期:2021-11-01
卷期号:2108 (1): 012071-012071
被引量:2
标识
DOI:10.1088/1742-6596/2108/1/012071
摘要
Abstract Aiming at the problem of wind power interval prediction, a short-term wind power interval prediction model based on VMD and improved BLS is proposed. Firstly, the complex wind power time series are decomposed by variational mode decomposition to reduce the non stationarity of wind power. Then an improved broad learning system (BLS) is established to predict the power and error of each component, and a weight is given to the prediction error of each component. The sparrow search algorithm (SSA) is used to optimize the weight, and the width of the prediction interval is obtained by adding the power and error prediction values. The experimental data show that the proposed model improves the accuracy of prediction interval.
科研通智能强力驱动
Strongly Powered by AbleSci AI