Solving Inverse Stochastic Problems from Discrete Particle Observations Using the Fokker--Planck Equation and Physics-Informed Neural Networks

福克-普朗克方程 数学 概率密度函数 分歧(语言学) 人工神经网络 应用数学 扩散方程 统计物理学 反问题 核(代数) 随机微分方程 功能(生物学) 算法 数学分析 偏微分方程 物理 计算机科学 人工智能 统计 组合数学 生物 进化生物学 经济 哲学 经济 语言学 服务(商务)
作者
Xiaoli Chen,Liu Yang,Jinqiao Duan,George Em Karniadakis
出处
期刊:SIAM Journal on Scientific Computing [Society for Industrial and Applied Mathematics]
卷期号:43 (3): B811-B830 被引量:100
标识
DOI:10.1137/20m1360153
摘要

The Fokker--Planck (FP) equation governing the evolution of the probability density function (PDF) is applicable to many disciplines, but it requires specification of the coefficients for each case, which can be functions of space-time and not just constants and hence require the development of a data-driven modeling approach. When the data available is directly on the PDF, there exist methods for inverse problems that can be employed to infer the coefficients and thus determine the FP equation and subsequently obtain its solution. Herein, we address a more realistic scenario, where only sparse data are given on the particles' positions at a few time instants, which are not sufficient to accurately construct directly the PDF even at those times from existing methods, e.g., kernel estimation algorithms. To this end, we develop a general framework based on physics-informed neural networks (PINNs) that introduces a new loss function using the Kullback--Leibler divergence to connect the stochastic samples with the FP equation to simultaneously learn the equation and infer the multidimensional PDF at all times. In particular, we consider two types of inverse problems, type I, where the FP equation is known but the initial PDF is unknown, and type II, in which, in addition to the unknown initial PDF, the drift and diffusion terms are also unknown. In both cases, we investigate problems with either Brownian or Lévy noise or a combination of both. Here, we demonstrate the new PINN framework in detail in the one-dimensional (1D) case, but we also provide results for up to five dimensions demonstrating that we can infer both the FP equation and dynamics simultaneously at all times with high accuracy using only very few discrete observations of the particles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助干净荆采纳,获得10
1秒前
斯文败类应助慕迎蕾采纳,获得10
1秒前
咚咚发布了新的文献求助10
2秒前
444发布了新的文献求助30
2秒前
2秒前
Genmii完成签到,获得积分10
2秒前
3333橙发布了新的文献求助10
2秒前
嘚嘚发布了新的文献求助10
2秒前
小蘑菇应助积极的天问采纳,获得10
2秒前
3秒前
斯文败类应助婉妤采纳,获得10
3秒前
汉堡包应助QAQSS采纳,获得10
3秒前
明亮的幻灵完成签到,获得积分10
3秒前
4秒前
4秒前
黄裕鑫完成签到,获得积分10
4秒前
5秒前
5秒前
煜琪发布了新的文献求助10
5秒前
图南发布了新的文献求助10
5秒前
5秒前
Neuronguy发布了新的文献求助10
5秒前
斯文败类应助顺利梦之采纳,获得10
6秒前
6秒前
田様应助60采纳,获得10
6秒前
6秒前
江月年发布了新的文献求助10
6秒前
Eason发布了新的文献求助10
6秒前
cjx发布了新的文献求助10
7秒前
科研通AI6应助suuu采纳,获得10
7秒前
文艺的电源完成签到,获得积分10
7秒前
舍予发布了新的文献求助30
7秒前
小广发布了新的文献求助10
7秒前
科研通AI6应助一颗西柚采纳,获得10
8秒前
大模型应助科研喵采纳,获得10
8秒前
英姑应助我真没想重生啊采纳,获得10
8秒前
wave完成签到 ,获得积分10
9秒前
nazi完成签到,获得积分10
9秒前
9秒前
张朝程发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430202
求助须知:如何正确求助?哪些是违规求助? 4543438
关于积分的说明 14187210
捐赠科研通 4461576
什么是DOI,文献DOI怎么找? 2446244
邀请新用户注册赠送积分活动 1437490
关于科研通互助平台的介绍 1414381