亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ocean wave power forecasting using convolutional neural networks

卷积神经网络 计算机科学 风浪 波浪能 人工神经网络 功率(物理) 人工智能 地质学 海洋学 物理 量子力学
作者
Pedro Bento,José Pombo,M.R.A. Calado,S.J.P.S. Mariano
出处
期刊:Iet Renewable Power Generation [Institution of Engineering and Technology]
卷期号:15 (14): 3341-3353 被引量:15
标识
DOI:10.1049/rpg2.12258
摘要

Abstract Climate change “fuelled” by anthropogenic causes has been identified as the greatest threat faced by societies. In this respect, the roadmap to a “greener” generation mix certainly includes a greater heterogeneity in terms of renewable energy sources. In this regard, one of the leading candidates is ocean wave energy. One of the issues with renewables in general is their unpredictably and variability, as it is crucial to address the subject of wave power forecasting, to facilitate a future market integration. Hence, to tackle this prediction problem, a new approach to short‐term wave power forecasting is proposed, based on deep learning capabilities. These highly popular networks were traditionally developed to deal with images (2D data), so the authors discuss all the necessary implementation and design details to employ these networks with 1D input data, to solve a regression‐based problem. These case‐studies include wave data from three different locations. The proposed approach was tested across all seasons of the year, revealing the suitability to extract the relevant input data dependencies from the time‐series. As such, especially for horizons up to 6 h, the proposed approach outperforms other conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nojego完成签到,获得积分20
1秒前
12秒前
12秒前
12秒前
CUN完成签到,获得积分10
20秒前
fengfenghao完成签到,获得积分10
36秒前
42秒前
zbzb发布了新的文献求助10
57秒前
breeze发布了新的文献求助200
58秒前
Orange应助Silence采纳,获得10
1分钟前
1分钟前
juan完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Silence发布了新的文献求助10
1分钟前
所所应助zbzb采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
cy0824完成签到 ,获得积分10
2分钟前
zbzb发布了新的文献求助10
2分钟前
2分钟前
科研通AI5应助zbzb采纳,获得10
2分钟前
Shuai发布了新的文献求助10
2分钟前
2分钟前
3分钟前
大气的莆完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI2S应助breeze采纳,获得30
3分钟前
3分钟前
草木发布了新的文献求助10
3分钟前
zbzb发布了新的文献求助10
3分钟前
Millennial完成签到,获得积分10
3分钟前
科研通AI5应助zbzb采纳,获得10
3分钟前
future完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
Keylor发布了新的文献求助10
4分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833846
求助须知:如何正确求助?哪些是违规求助? 3376298
关于积分的说明 10492559
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704723
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771859