超立方体
组合数学
兰姆达
图形
数学
整数(计算机科学)
组分(热力学)
连通性
离散数学
物理
计算机科学
热力学
光学
程序设计语言
作者
Shu-Li Zhao,Weihua Yang
出处
期刊:Cornell University - arXiv
日期:2018-01-01
被引量:3
标识
DOI:10.48550/arxiv.1803.01312
摘要
The $g$-component edge connectivity $c\lambda_g(G)$ of a non-complete graph $G$ is the minimum number of edges whose deletion results in a graph with at least $g$ components. In this paper, we determine the component edge connectivity of the folded hypercube $c\lambda_{g+1}(FQ_{n})=(n+1)g-(\sum\limits_{i=0}^{s}t_i2^{t_i-1}+\sum\limits_{i=0}^{s} i\cdot 2^{t_i})$ for $g\leq 2^{[\frac{n+1}2]}$ and $n\geq 5$, where $g$ be a positive integer and $g=\sum\limits_{i=0}^{s}2^{t_i}$ be the decomposition of $g$ such that $t_0=[\log_{2}{g}],$ and $t_i=[\log_2({g-\sum\limits_{r=0}^{i-1}2^{t_r}})]$ for $i\geq 1$.
科研通智能强力驱动
Strongly Powered by AbleSci AI