Development of a Liquid Chromatography–High Resolution Mass Spectrometry Metabolomics Method with High Specificity for Metabolite Identification Using All Ion Fragmentation Acquisition

化学 代谢组学 色谱法 代谢物 碎片(计算) 质谱法 高分辨率 液相色谱-质谱法 分辨率(逻辑) 生物化学 计算机科学 遥感 操作系统 地质学 人工智能
作者
Shama Naz,Héctor Gallart‐Ayala,Stacey N. Reinke,Caroline Mathon,Richard T. Blankley,Romanas Chaleckis,Craig E. Wheelock
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:89 (15): 7933-7942 被引量:131
标识
DOI:10.1021/acs.analchem.7b00925
摘要

High-resolution mass spectrometry (HRMS)-based metabolomics approaches have made significant advances. However, metabolite identification is still a major challenge with significant bottleneck in translating metabolomics data into biological context. In the current study, a liquid chromatography (LC)–HRMS metabolomics method was developed using an all ion fragmentation (AIF) acquisition approach. To increase the specificity in metabolite annotation, four criteria were considered: (i) accurate mass (AM), (ii) retention time (RT), (iii) MS/MS spectrum, and (iv) product/precursor ion intensity ratios. We constructed an in-house mass spectral library of 408 metabolites containing AMRT and MS/MS spectra information at four collision energies. The percent relative standard deviations between ion ratios of a metabolite in an analytical standard vs sample matrix were used as an additional metric for establishing metabolite identity. A data processing method for targeted metabolite screening was then created, merging m/z, RT, MS/MS, and ion ratio information for each of the 413 metabolites. In the data processing method, the precursor ion and product ion were considered as the quantifier and qualifier ion, respectively. We also included a scheme to distinguish coeluting isobaric compounds by selecting a specific product ion as the quantifier ion instead of the precursor ion. An advantage of the current AIF approach is the concurrent collection of full scan data, enabling identification of metabolites not included in the database. Our data acquisition strategy enables a simultaneous mixture of database-dependent targeted and nontargeted metabolomics in combination with improved accuracy in metabolite identification, increasing the quality of the biological information acquired in a metabolomics experiment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Gyrfalcon完成签到 ,获得积分10
1秒前
科研通AI5应助爆螺钉采纳,获得10
2秒前
2秒前
2秒前
4秒前
DanguiOA发布了新的文献求助20
4秒前
尕翠完成签到,获得积分10
5秒前
ddd发布了新的文献求助10
5秒前
popo发布了新的文献求助10
6秒前
malenia发布了新的文献求助10
7秒前
李健的粉丝团团长应助lin采纳,获得20
7秒前
取名叫做利完成签到,获得积分10
9秒前
bkagyin应助橘子采纳,获得10
10秒前
10秒前
Orange应助黄青青采纳,获得10
11秒前
xxxw发布了新的文献求助10
11秒前
李爱国应助世上无难事采纳,获得10
11秒前
华仔应助xh采纳,获得10
11秒前
12秒前
fifteen应助言简采纳,获得10
12秒前
13秒前
13秒前
15秒前
15秒前
15秒前
15秒前
17秒前
17秒前
科研通AI5应助手拿大炮采纳,获得10
18秒前
秦善斓发布了新的文献求助10
18秒前
18秒前
斯文的妙海完成签到 ,获得积分10
18秒前
19秒前
19秒前
nickthename完成签到,获得积分20
19秒前
jin发布了新的文献求助10
19秒前
上官若男应助yhx采纳,获得10
20秒前
lin发布了新的文献求助20
21秒前
FL发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4404723
求助须知:如何正确求助?哪些是违规求助? 3890747
关于积分的说明 12108323
捐赠科研通 3535602
什么是DOI,文献DOI怎么找? 1939971
邀请新用户注册赠送积分活动 980891
科研通“疑难数据库(出版商)”最低求助积分说明 877513