工作流程
计算机科学
最大值和最小值
管道(软件)
人工智能
机器学习
复杂系统
一般化
晶体结构预测
人工神经网络
卡斯普
概化理论
灵活性(工程)
原子间势
数据挖掘
加速
从头算
领域(数学分析)
贝叶斯优化
深度学习
蛋白质结构预测
系统设计
能量(信号处理)
能量最小化
采样(信号处理)
参数化复杂度
三元运算
作者
Jiaxiang Li,Jiwen Feng,Jie Luo,Ye Han,X. R. Zhou,Qi Song,Jian Lv,Keith T. Butler,Hanyu Liu,Congwei Xie,Yu Xie,Yanming Ma
标识
DOI:10.1038/s41524-026-01971-9
摘要
Abstract Machine learning interatomic potentials have revolutionized complex materials design by enabling rapid exploration of material configurational spaces via crystal structure prediction with ab initio accuracy. However, critical challenges persist in ensuring robust generalization to unknown structures and minimizing the requirement for substantial expert knowledge and time-consuming manual interventions. Here, we propose an automated crystal structure prediction framework built upon the attention-coupled neural network potential to address these limitations. The generalizability of the potential is achieved by sampling regions across the local minima of the potential energy surface, where the self-evolving pipeline autonomously refines the potential iteratively while minimizing human intervention. The workflow is validated on Mg-Ca-H ternary and Be-P-N-O quaternary systems by exploring nearly 10 million configurations, demonstrating substantial speedup compared to first-principles calculations. These results underscore the effectiveness of our approach in accelerating the exploration and discovery of complex multi-component functional materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI