Emerging Artificial Intelligence Technologies for Risk Assessment and Management in Acute Myeloid Leukemia

作者
Mohammad Amin Ansarian,Mahsa Fatahichegeni,Rui‐Hua Xu,Ying Chen,Xiaoning Wang,Juan Ren,Huasheng Liu
出处
期刊:JAMA Oncology [American Medical Association]
标识
DOI:10.1001/jamaoncol.2025.3601
摘要

Importance Acute myeloid leukemia (AML) is a severe hematologic cancer with complex genetic heterogeneity necessitating personalized treatment approaches. Artificial intelligence (AI) technologies may revolutionize risk stratification, diagnosis enhancement, and treatment planning in addressing critical gaps in AML management, particularly in low-resource health care environments. Observations This narrative review synthesizes existing AI applications in 3 primary areas of AML management. Machine learning algorithms integrating clinical, cytogenetic, and molecular data demonstrate greater prognostic accuracy than conventional European LeukemiaNet (ELN) guidelines. Deep learning approaches to image analysis yield excellent results for AML subtype identification from bone marrow smears (area under the receiver operating characteristic curve [AUROC]: 0.97) and genetic variant prediction (eg, NPM1 status [AUROC: 0.92]). AI-driven genomic analysis reveals novel prognostic signatures and therapeutic targets through advanced pattern recognition, with high-dimensional machine learning achieving greater than 99% accuracy in AML classification from transcriptomic data. Explainable AI models overcome the black box limitation through interpretable algorithms with Shapley Additive Explanations values and local interpretable model-agnostic explanation techniques. Federated learning approaches enable multi-institutional collaboration with protection of patient privacy, with 96.5% accuracy in leukemia classification on heterogeneous datasets. Conclusions and Relevance AI technologies hold potential to improve AML treatment through enhanced risk stratification, early detection capabilities, and individualized treatment optimization. The transition toward explainable AI models is essential to clinical readiness, with federated learning architectures resolving data scarcity concerns. Seamless integration requires harmonized data standards, robust regulatory frameworks, and equitable access to technology to fully realize the transformative potential of AI in improving outcomes for patients with AML globally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老Mark发布了新的文献求助10
刚刚
刚刚
3秒前
3秒前
3秒前
顾瑶发布了新的文献求助10
4秒前
景严完成签到 ,获得积分10
5秒前
星辰大海应助孙总采纳,获得10
5秒前
7秒前
lllhhh7完成签到,获得积分10
7秒前
沉静从阳发布了新的文献求助10
8秒前
满_1999发布了新的文献求助10
8秒前
10秒前
10秒前
坚定荔枝完成签到 ,获得积分10
10秒前
Gallop完成签到,获得积分10
11秒前
蔡大大发布了新的文献求助10
12秒前
王博完成签到,获得积分10
13秒前
Jorna发布了新的文献求助30
13秒前
小王子发布了新的文献求助10
14秒前
斯文败类应助芋泥奶酪采纳,获得10
14秒前
温柔的吐司完成签到,获得积分10
17秒前
zwg完成签到,获得积分10
18秒前
完美大神完成签到 ,获得积分10
21秒前
21秒前
乐乐应助小嘉饼饼采纳,获得10
22秒前
Jorna完成签到,获得积分10
24秒前
小二郎应助杰杰大叔采纳,获得50
26秒前
LijinJiang完成签到,获得积分10
26秒前
27秒前
瘦瘦的艳发布了新的文献求助10
27秒前
28秒前
28秒前
xxt发布了新的文献求助10
29秒前
神勇秋白发布了新的文献求助10
30秒前
LijinJiang发布了新的文献求助10
31秒前
lxg完成签到,获得积分10
33秒前
英俊的铭应助egg采纳,获得10
34秒前
Hello应助张福豪采纳,获得10
34秒前
炙热芷蕊完成签到,获得积分10
34秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207295
求助须知:如何正确求助?哪些是违规求助? 4385308
关于积分的说明 13656553
捐赠科研通 4243869
什么是DOI,文献DOI怎么找? 2328416
邀请新用户注册赠送积分活动 1326114
关于科研通互助平台的介绍 1278325